Cai Chao, Liu Kang, Zhu Yuanmin, Li Pengcheng, Wang Qiyou, Liu Bao, Chen Shanyong, Li Huangjingwei, Zhu Li, Li Hongmei, Fu Junwei, Chen Yu, Pensa Evangelina, Hu Junhua, Lu Ying-Rui, Chan Ting-Shan, Cortés Emiliano, Liu Min
School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China.
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
Angew Chem Int Ed Engl. 2022 Jan 21;61(4):e202113664. doi: 10.1002/anie.202113664. Epub 2021 Dec 7.
Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm and a Tafel slope of 20.6 mV dec in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.
钌(Ru)基催化剂性能可观且成本理想,正成为在碱性析氢反应(HER)中取代铂(Pt)的极具吸引力的候选材料。Ru位点上的氢结合(Ru-H)是限制HER活性的一个重要因素。在此,密度泛函理论(DFT)模拟表明,Ru-H结合能的本质是Ru的 轨道与H的1s轨道之间的强相互作用。Ru位点与基底(Co和Ni)之间的电荷转移导致Ru的 带中心适当向下移动,这使得RuCo体系中H*的吉布斯自由能为0.022 eV,远低于纯Ru体系中的0.133 eV。这一理论预测已通过RuCo合金纳米片(RuCo ANSs)得到实验证实。它们通过快速共沉淀法制备,随后进行温和的电化学还原。结构表征表明,Ru原子作为孤立的活性位点嵌入到Co基底中,具有平面对称和Z方向不对称的配位结构,获得了优化的 调制电子结构。氢传感器和程序升温脱附(TPD)测试表明,与纯Ru纳米颗粒相比,RuCo ANSs中Ru-H相互作用增强。结果,RuCo ANSs在1 M KOH中,在10 mA cm时达到10 mV的超低过电位,塔菲尔斜率为20.6 mV dec,性能优于商业Pt/C。这项整体工作为通过优化活性位点的金属-H结合能来促进碱性HER提供了新的见解。