Laboratorio de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, Brazil.
Department of Statistics, Federal University of Paraná, Curitiba, PR, Brazil.
Neurosci Lett. 2022 Jan 23;770:136358. doi: 10.1016/j.neulet.2021.136358. Epub 2021 Nov 22.
The 'at risk mental state' (ARMS) paradigm has been introduced in psychiatry to study prodromal phases of schizophrenia. With time it was seen that the ARMS state can also precede mental disorders other than schizophrenia, such as depression and anxiety. However, several problems hamper the paradigm's use in preventative medicine, such as varying transition rates across studies, the use of non-naturalistic samples, and the multifactorial nature of psychiatric disorders. To strengthen ARMS predictive power, there is a need for a holistic model incorporating-in an unbiased fashion-the small-effect factors that cause mental disorders. Bayesian networks, a probabilistic graphical model, was used in a populational cohort of 83 ARMS individuals to predict conversion to psychiatric illness. Nine predictors-including state, trait, biological and environmental factors-were inputted. Dopamine receptor 2 polymorphism, high private religiosity, and childhood trauma remained in the final model, which reached an 85.51% (SD = 0.1190) accuracy level in predicting conversion. This is the first time a robust model was produced with Bayesian networks to predict psychiatric illness among at risk individuals from the general population. This could be an important tool to strengthen predictive measures in psychiatry which should be replicated in larger samples to provide the model further learning.
“风险精神状态”(ARMS)范式已在精神病学中引入,以研究精神分裂症的前驱期。随着时间的推移,人们发现 ARMS 状态也可能先于精神分裂症以外的其他精神障碍,如抑郁和焦虑。然而,该范式在预防医学中的应用存在几个问题,例如研究之间的转换率不同、使用非自然样本以及精神障碍的多因素性质。为了增强 ARMS 的预测能力,需要一个整体模型,以公正的方式纳入导致精神障碍的小效应因素。贝叶斯网络是一种概率图形模型,用于对 83 名 ARMS 个体的人群队列进行预测转换为精神疾病。包括状态、特质、生物和环境因素在内的 9 个预测因子被输入。多巴胺受体 2 多态性、高私人宗教信仰和儿童创伤仍然存在于最终模型中,该模型在预测转换方面达到了 85.51%(SD=0.1190)的准确率。这是首次使用贝叶斯网络生成稳健模型来预测一般人群中处于风险中的个体的精神疾病。这可能是加强精神病学预测措施的重要工具,应该在更大的样本中进行复制,为模型提供进一步的学习。