Suppr超能文献

解析微生物关联网络中的环境效应。

Disentangling environmental effects in microbial association networks.

机构信息

Institute of Marine Sciences, CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.

Research Unit in Biology of Microorganisms (URBM), University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium.

出版信息

Microbiome. 2021 Nov 26;9(1):232. doi: 10.1186/s40168-021-01141-7.

Abstract

BACKGROUND

Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not.

RESULTS

We present EnDED (environmentally driven edge detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally driven. The four approaches are sign pattern, overlap, interaction information, and data processing inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e., environmentally driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally driven edges-87% sign pattern and overlap, 67% interaction information, and 44% data processing inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally driven, while individual methods predicted 24.8% (data processing inequality), 25.7% (interaction information), and up to 84.6% (sign pattern as well as overlap). The fraction of environmentally driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors.

CONCLUSIONS

To reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses. Video abstract.

摘要

背景

微生物之间的生态相互作用是生态系统功能的基础,但它们大多未知或了解甚少。高通量组学可以通过跨时间和空间的关联来指示微生物相互作用,这些关联可以表示为关联网络。关联可能是由微生物之间的生态相互作用,也可能是由环境选择产生的,其中关联是由环境驱动的。因此,在进行下游分析和解释之前,我们需要区分关联的性质,特别是它是否是由环境选择引起的。

结果

我们提出了 EnDED(环境驱动的边缘检测),这是四种方法的实现以及它们的组合,用于预测关联网络中微生物之间的哪些链接是由环境驱动的。这四种方法是符号模式、重叠、相互信息和数据处理不等式。我们在由 50 个微生物模拟数据组成的网络上测试了 EnDED。这些网络平均包含 50 个节点和 1087 条边,其中 60 条是真实的相互作用,但 1026 条是虚假的关联(即由环境驱动或由偶然因素引起的)。单独应用每种方法,我们检测到大量的环境驱动边缘,其中符号模式和重叠为 87%,相互信息为 67%,数据处理不等式为 44%。将这些方法结合在一起形成交集方法,保留了更多的相互作用,包括真实的和虚假的相互作用(32%的环境驱动关联)。在用模拟数据集验证后,我们将 EnDED 应用于从 10 年每月观测的微生物-浮游生物丰度中推断出的海洋微生物网络。交集组合预测,8.3%的关联是由环境驱动的,而单个方法预测 24.8%(数据处理不等式)、25.7%(相互信息),甚至高达 84.6%(符号模式和重叠)。在真实网络中,负微生物关联中环境驱动边缘的比例随着环境因素数量的增加而迅速增加。

结论

为了对生态相互作用形成准确的假设,确定、量化和去除海洋微生物关联网络中的环境驱动关联非常重要。为此,EnDED 提供了多达四种的单独方法以及它们的组合。然而,特别是对于交集组合,我们建议使用 EnDED 与其他策略相结合,以减少错误关联的数量,从而减少潜在的相互作用假设的数量。视频摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6526/8620190/fb17bbe2f4ba/40168_2021_1141_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验