Latif Muhamad Hafiz Abd, Faye Ibrahima
Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental & Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
Artif Intell Med. 2021 Dec;122:102213. doi: 10.1016/j.artmed.2021.102213. Epub 2021 Nov 14.
Improving longevity is one of the greatest achievements in humanity. Because of this, the population is growing older, and the ubiquity of knee osteoarthritis (OA) is on the rise. Nonetheless, the understanding and ability to investigate potential precursors of knee OA have been impeded by time-consuming and laborious manual delineation processes which are prone to poor reproducibility. A method for automatic segmentation of the tibiofemoral joint using magnetic resonance imaging (MRI) is presented in this work. The proposed method utilizes a deeply supervised 2D-3D ensemble U-Net, which consists of foreground class oversampling, deep supervision loss branches, and Gaussian weighted softmax score aggregation. It was designed, optimized, and tested on 507 3D double echo steady-state (DESS) MR volumes using a two-fold cross-validation approach. A state-of-the-art segmentation accuracy measured as Dice similarity coefficient (DSC) for the femur bone (98.6 ± 0.27%), tibia bone (98.8 ± 0.31%), femoral cartilage (90.3 ± 2.89%), and tibial cartilage (86.7 ± 4.07%) is achieved. Notably, the proposed method yields sub-voxel accuracy for an average symmetric surface distance (ASD) less than 0.36 mm. The model performance is not affected by the severity of radiographic osteoarthritis (rOA) grades or the presence of pathophysiological changes. The proposed method offers an accurate segmentation with high time efficiency (~62 s) per 3D volume, which is well suited for efficient processing and analysis of the large prospective cohorts of the Osteoarthritis Initiative (OAI).
延长寿命是人类最伟大的成就之一。正因如此,人口老龄化加剧,膝关节骨关节炎(OA)的普遍性也在上升。然而,由于手动描绘过程耗时费力且容易出现重复性差的问题,对膝关节OA潜在前驱因素的理解和研究能力受到了阻碍。本文提出了一种利用磁共振成像(MRI)自动分割胫股关节的方法。所提出的方法利用了深度监督的2D-3D集成U-Net,它由前景类过采样、深度监督损失分支和高斯加权softmax分数聚合组成。使用双折交叉验证方法在507个3D双回波稳态(DESS)MR容积上进行了设计、优化和测试。在股骨(98.6±0.27%)、胫骨(98.8±0.31%)、股骨软骨(90.3±2.89%)和胫骨软骨(86.7±4.07%)的分割精度方面达到了当前最优水平,以骰子相似系数(DSC)衡量。值得注意的是,所提出的方法对于平均对称表面距离(ASD)小于0.36毫米可实现亚体素精度。模型性能不受放射学骨关节炎(rOA)分级的严重程度或病理生理变化的影响。所提出的方法每3D容积可实现高精度分割且时间效率高(约62秒),非常适合对骨关节炎倡议(OAI)的大型前瞻性队列进行高效处理和分析。