Suppr超能文献

从 T* relaxometry MRI 扫描中自动分割愈合的前交叉韧带。

Automated segmentation of the healed anterior cruciate ligament from T * relaxometry MRI scans.

机构信息

Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA.

Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Orthop Res. 2023 Mar;41(3):649-656. doi: 10.1002/jor.25390. Epub 2022 Jun 11.

Abstract

Collagen organization of the anterior cruciate ligament (ACL) can be evaluated using T * relaxometry. However, T * mapping requires manual image segmentation, which is a time-consuming process and prone to inter- and intra- segmenter variability. Automating segmentation would address these challenges. A model previously trained using Constructive Interference in Steady State (CISS) scans was applied to T * segmentation via transfer learning. It was hypothesized that there would be no significant differences in the model's segmentation performance between T * and CISS, structural measures versus ground truth manual segmentation, and reliability versus independent and retest manual segmentation. Transfer learning was conducted using 54 T * scans of the ACL. Segmentation performance was assessed with Dice coefficient, precision, and sensitivity, and structurally with T * value, volume, subvolume proportions, and cross-sectional area. Model performance relative to independent manual segmentation and repeated segmentation by the ground truth segmenter (retest) were evaluated on a random subset. Segmentation performance was analyzed with Mann-Whitney U tests, structural measures with Wilcoxon signed-rank tests, and performance relative to manual segmentation with repeated-measures analysis of variance/Tukey tests (α = 0.05). T * segmentation performance was not significantly different from CISS on all measures (p > 0.35). No significant differences were detected in structural measures (p > 0.50). Automatic segmentation performed as well as the retest on all segmentation measures, whereas independent segmentations were lower than retest and/or automatic segmentation (p < 0.023). Structural measures were not significantly different between segmenters. The automatic segmentation model performed as well on the T * sequence as on CISS and outperformed independent manual segmentation while performing as well as retest segmentation.

摘要

前交叉韧带(ACL)胶原组织可通过 T弛豫度进行评估。然而,T映射需要手动图像分割,这是一个耗时的过程,容易出现分段内和分段间的可变性。自动化分割将解决这些挑战。先前使用稳态相干干扰(CISS)扫描训练的模型通过迁移学习应用于 T分割。假设在 T和 CISS 之间、结构测量值与真实手动分割之间、可靠性与独立和复测手动分割之间,模型的分割性能不会有显著差异。使用 54 个 ACL 的 T扫描进行了迁移学习。使用 Dice 系数、精度和灵敏度进行分割性能评估,使用 T值、体积、子体积比例和横截面积进行结构评估。在随机子集中评估模型相对于独立手动分割和真实分割者的重复分割(复测)的性能。使用 Mann-Whitney U 检验分析分割性能,使用 Wilcoxon 符号秩检验分析结构测量值,使用重复测量方差/Tukey 检验分析与手动分割的性能相对关系(α=0.05)。在所有测量指标上,T分割性能与 CISS 均无显著差异(p>0.35)。在结构测量值上未检测到显著差异(p>0.50)。自动分割在所有分割指标上的性能与复测相当,而独立分割的性能低于复测和/或自动分割(p<0.023)。结构测量值在分割者之间没有显著差异。自动分割模型在 T序列上的性能与 CISS 相当,优于独立手动分割,与复测分割相当。

相似文献

本文引用的文献

7
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验