Suppr超能文献

具有柔顺对映侧链的瓶刷聚合物表现出不同的生物学性质。

Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties.

机构信息

Department of Chemistry and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Chem. 2022 Jan;14(1):85-93. doi: 10.1038/s41557-021-00826-8. Epub 2021 Nov 25.

Abstract

Chirality and molecular conformation are central components of life: biological systems rely on stereospecific interactions between discrete (macro)molecular conformers, and the impacts of stereochemistry and rigidity on the properties of small molecules and biomacromolecules have been intensively studied. Nevertheless, how these features affect the properties of synthetic macromolecules has received comparably little attention. Here we leverage iterative exponential growth and ring-opening metathesis polymerization to produce water-soluble, chiral bottlebrush polymers (CBPs) from two enantiomeric pairs of macromonomers of differing rigidity. Remarkably, CBPs with conformationally flexible, mirror image side chains show several-fold differences in cytotoxicity, cell uptake, blood pharmacokinetics and liver clearance; CBPs with comparably rigid, mirror image side chains show no differences. These observations are rationalized with a simple model that correlates greater conformational freedom with enhanced chiral recognition. Altogether, this work provides routes to the synthesis of chiral nanostructured polymers and suggests key roles for stereochemistry and conformational rigidity in the design of future biomaterials.

摘要

手性和分子构象是生命的核心组成部分

生物系统依赖离散(大)分子构象之间的立体特异性相互作用,立体化学和刚性对小分子和生物大分子性质的影响已经得到了深入研究。然而,这些特征如何影响合成大分子的性质却受到了相对较少的关注。在这里,我们利用迭代指数增长和开环复分解聚合,从两种对映体的、刚性不同的大分子单体,生成了水溶性的手性瓶刷聚合物(CBP)。值得注意的是,具有构象柔性、镜像侧链的 CBP 在细胞毒性、细胞摄取、血液药代动力学和肝脏清除方面表现出了几倍的差异;而具有相似刚性、镜像侧链的 CBP 则没有差异。这些观察结果可以用一个简单的模型来解释,该模型将更大的构象自由度与增强的手性识别相关联。总的来说,这项工作为手性纳米结构聚合物的合成提供了途径,并表明立体化学和构象刚性在手性生物材料设计中的关键作用。

相似文献

1
Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties.
Nat Chem. 2022 Jan;14(1):85-93. doi: 10.1038/s41557-021-00826-8. Epub 2021 Nov 25.
2
Water-soluble polyphosphonate-based bottlebrush copolymers aqueous ring-opening metathesis polymerization.
Chem Sci. 2023 Sep 26;14(40):11273-11282. doi: 10.1039/d3sc02649c. eCollection 2023 Oct 18.
3
Synthesis and Micellization of Bottlebrush Poloxamers.
ACS Macro Lett. 2022 Apr 19;11(4):460-467. doi: 10.1021/acsmacrolett.2c00053. Epub 2022 Mar 21.
5
Versatile Light-Mediated Synthesis of Degradable Bottlebrush Polymers Using α-Lipoic Acid.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202409323. doi: 10.1002/anie.202409323. Epub 2024 Oct 22.
6
Scalable Synthesis of Multivalent Macromonomers for ROMP.
ACS Macro Lett. 2018 Apr 17;7(4):472-476. doi: 10.1021/acsmacrolett.8b00201. Epub 2018 Mar 26.
7
Design, Synthesis, and Self-Assembly of Janus Bottlebrush Polymers.
Macromol Rapid Commun. 2020 Oct;41(20):e2000357. doi: 10.1002/marc.202000357. Epub 2020 Aug 25.
9
Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers.
J Am Chem Soc. 2016 Sep 14;138(36):11501-4. doi: 10.1021/jacs.6b07670. Epub 2016 Sep 1.

引用本文的文献

1
Chiral covalent organic cages: Construction and chiral functions.
Smart Mol. 2025 Mar 25;3(2):e20240038. doi: 10.1002/smo.20240038. eCollection 2025 Jun.
2
Discrete Brush Polymers Enhance F MRI Performance through Architectural Precision.
J Am Chem Soc. 2025 May 14;147(19):16171-16178. doi: 10.1021/jacs.5c00938. Epub 2025 May 1.
4
Core-Shell Bottlebrush Polymers: Unmatched Delivery of Small Active Compounds Deep Into Tissues.
Small. 2025 Feb;21(5):e2408616. doi: 10.1002/smll.202408616. Epub 2024 Dec 16.
6
Revealing the Effect of Stereocontrol on Intermolecular Interactions between Abiotic, Sequence-Defined Polyurethanes and a Ligand.
ACS Biomater Sci Eng. 2024 Jun 10;10(6):3727-3738. doi: 10.1021/acsbiomaterials.4c00456. Epub 2024 May 28.
7
Chiral Materials for Optics and Electronics: Ready to Rise?
Micromachines (Basel). 2024 Apr 15;15(4):528. doi: 10.3390/mi15040528.
8
SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes.
Beilstein J Org Chem. 2024 Apr 3;20:701-713. doi: 10.3762/bjoc.20.64. eCollection 2024.
9
High-Throughput Synthesis, Purification, and Application of Alkyne-Functionalized Discrete Oligomers.
J Am Chem Soc. 2024 Mar 27;146(12):8650-8658. doi: 10.1021/jacs.4c00751. Epub 2024 Mar 15.
10
Inhibiting the Keap1/Nrf2 Protein-Protein Interaction with Protein-Like Polymers.
Adv Mater. 2024 May;36(21):e2311467. doi: 10.1002/adma.202311467. Epub 2024 Feb 16.

本文引用的文献

2
A Novel Star Like Eight-Arm Polyethylene Glycol-Deferoxamine Conjugate for Iron Overload Therapy.
Pharmaceutics. 2020 Apr 7;12(4):329. doi: 10.3390/pharmaceutics12040329.
3
Chiral Supraparticles for Controllable Nanomedicine.
Adv Mater. 2020 Jan;32(1):e1903878. doi: 10.1002/adma.201903878. Epub 2019 Nov 5.
4
Evolution of macromolecular complexity in drug delivery systems.
Nat Rev Chem. 2017 Aug;1(8). doi: 10.1038/s41570-017-0063. Epub 2017 Aug 9.
5
Along the Central Dogma-Controlling Gene Expression with Small Molecules.
Annu Rev Biochem. 2018 Jun 20;87:391-420. doi: 10.1146/annurev-biochem-060614-033923. Epub 2018 May 4.
6
Stereochemical Sequence Dictates Unimolecular Diblock Copolymer Assembly.
J Am Chem Soc. 2018 Feb 7;140(5):1596-1599. doi: 10.1021/jacs.7b12696. Epub 2018 Jan 22.
8
The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices.
Biomaterials. 2017 Feb;117:66-76. doi: 10.1016/j.biomaterials.2016.11.037. Epub 2016 Nov 24.
10
Iterative Exponential Growth Synthesis and Assembly of Uniform Diblock Copolymers.
J Am Chem Soc. 2016 Aug 3;138(30):9369-72. doi: 10.1021/jacs.6b04964. Epub 2016 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验