Suppr超能文献

occAssess:一个用于评估物种出现数据中潜在偏差的R软件包。

occAssess: An R package for assessing potential biases in species occurrence data.

作者信息

Boyd Robin J, Powney Gary D, Carvell Claire, Pescott Oliver L

机构信息

UK Centre for Ecology and Hydrology Wallingford UK.

Oxford Martin School & School of Geography and Environment University of Oxford Oxford UK.

出版信息

Ecol Evol. 2021 Nov 3;11(22):16177-16187. doi: 10.1002/ece3.8299. eCollection 2021 Nov.

Abstract

Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables straightforward screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial, and environmental dimensions. Users can opt to provide a set of time periods into which the data will be split; in this case separate outputs will be provided for each period, making the package particularly useful for assessing the suitability of a dataset for estimating temporal trends in species' distributions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf-nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspects of data coverage appear to have changed over time. We then discuss additional applications of the package, highlight its limitations, and point to future development opportunities.

摘要

来自各种来源的物种出现记录越来越多地汇总到异构数据库中,并提供给生态学家以供即时分析使用。然而,这些数据通常存在偏差,即它们不是目标感兴趣种群的概率样本,这意味着它们提供的信息可能无法准确反映现实。因此,在将物种出现数据用于研究之前,对其进行适当审查至关重要。在本文中,我们介绍了occAssess,这是一个R包,可用于直接筛选物种出现数据是否存在潜在偏差。该包包含许多离散函数,每个函数都返回分类学、时间、空间和环境维度中一个或多个维度的潜在偏差度量。用户可以选择提供一组时间段,数据将被分割到这些时间段中;在这种情况下,将为每个时间段提供单独的输出,这使得该包对于评估数据集是否适合估计物种分布的时间趋势特别有用。输出以可视化方式提供(作为ggplot2对象),并且不包括关于数据质量是否足以用于任何给定推断用途的正式建议。相反,它们应用作辅助信息,并在正在提出的问题以及用于回答该问题的方法的背景下进行查看。我们通过将occAssess应用于南美洲两种关键传粉媒介类群的数据来证明其效用:叶鼻蝠(叶口蝠科)和食蚜蝇(食蚜蝇科)。在这个实例中,我们简要评估了数据覆盖的各个方面随时间变化的程度。然后,我们讨论了该包的其他应用,强调了其局限性,并指出了未来的发展机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96dc/8601935/b754b94025db/ECE3-11-16177-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验