Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland.
Institute for Inorganic Chemistry, Graz University of Technology, Stremayergasse 9/V, Graz, 8010, Austria.
Small. 2022 Feb;18(5):e2104211. doi: 10.1002/smll.202104211. Epub 2021 Nov 25.
Growing concerns of bacterial resistance against conventional antibiotics shifts the research focus toward antimicrobial peptide (AMP)-based materials. Most AMPs kill gram-negative bacteria by destroying their inner membrane, but have to first pass the outer membrane covered with lipopolysaccharides (LPS). Their interplay with the LPS is crucial for bactericidal activity, but is yet to be elucidated in detail. In this study, self-assemblies of Escherichia coli LPS with the human cathelicidin AMP LL-37, free and encapsulated into glyceryl monooleate (GMO) lipid nanoparticles, are analyzed using synchrotron small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. Circular dichroism spectroscopy is used to study modifications in LL-37's secondary structure. LPS is found to form elongated micelles and the addition of LL-37 induces their transformation to multilamellar structures. LPS' addition to GMO cubosomes triggers the swelling of the internal cubic structure, while in multilamellar GMO/LL-37 nanocarriers it causes transitions into unstructured particles. The insights on the interactions among LPS and LL-37, in its free form or encapsulated in GMO dispersions, may guide the design of LPS-responsive antimicrobial nanocarriers. The findings may further assist the formulation of antimicrobial nanomaterials with enhanced penetration of LPS layers for improved destruction of bacterial membranes.
人们对传统抗生素的细菌耐药性越来越担忧,这使得研究重点转向了基于抗菌肽 (AMP) 的材料。大多数 AMP 通过破坏革兰氏阴性菌的内膜来杀死它们,但首先必须穿过覆盖有脂多糖 (LPS) 的外膜。它们与 LPS 的相互作用对杀菌活性至关重要,但尚未详细阐明。在这项研究中,使用同步加速器小角度 X 射线散射、动态光散射和低温透射电子显微镜分析了大肠杆菌 LPS 与人源抗菌肽 LL-37 的自组装体,游离的和包封在单油酸甘油酯 (GMO) 脂质纳米粒子中的。圆二色性光谱用于研究 LL-37 二级结构的变化。发现 LPS 形成了长形胶束,添加 LL-37 会诱导其转化为多层结构。LPS 加入 GMO 立方脂质体中会引发内部立方结构的肿胀,而在多层 GMO/LL-37 纳米载体中,它会导致无定形颗粒的转变。这些关于 LPS 和游离形式或包封在 GMO 分散体中的 LL-37 之间相互作用的见解,可能有助于设计对 LPS 有响应的抗菌纳米载体。这些发现可能进一步有助于开发具有增强穿透 LPS 层能力的抗菌纳米材料,以更好地破坏细菌膜。