Suppr超能文献

NAS-SGAN:一种用于乳腺癌组织病理学图像异型性评分的半监督生成对抗网络模型

NAS-SGAN: A Semi-Supervised Generative Adversarial Network Model for Atypia Scoring of Breast Cancer Histopathological Images.

作者信息

Das Asha, Devarampati Vinod Kumar, Nair Madhu S

出版信息

IEEE J Biomed Health Inform. 2022 May;26(5):2276-2287. doi: 10.1109/JBHI.2021.3131103. Epub 2022 May 5.

Abstract

Nuclear atypia scoring (NAS), forms a significant factor in determining individualized treatment plans and also for the prognosis of the disease. Automation of cancer grading using quantitative image-based analysis of histopathological images can circumvent the shortcomings of the prevailing manual grading and can assist the pathologists in cancer diagnosis. However, developing such a robust classifier model require sufficient amount of annotated data, while the labeled histopathological images are scarce and expensive to procure as annotation forms a time-consuming and laborious task. Hence, a semi-supervised learning framework combined with the deep neural network based generative adversarial training, that can improve the performance of the classification model with limited annotated data, is proposed in this paper. The proposed NAS-SGAN model consists of discriminator and generator models that are trained in an adversarial manner using both labeled and unlabeled samples. The discriminator model is designed as an unsupervised model stacked over the supervised model sharing the model parameters and learns the data distribution by extracting the discriminative features. The generator model is trained over a stable feature matching objective function following a composite GAN architecture, and its for the first time the semi-supervised GAN model is explored for the grading of breast cancer. Experimental analysis shows that the proposed model could better discriminate different cancer grades thereby improving the robustness and accuracy of the system, even with limited amount of labeled samples.

摘要

核异型性评分(NAS)是确定个体化治疗方案以及疾病预后的重要因素。利用基于定量图像的组织病理学图像分析实现癌症分级自动化,可规避现行手工分级的缺点,并有助于病理学家进行癌症诊断。然而,开发这样一个强大的分类器模型需要大量带注释的数据,而标记的组织病理学图像既稀缺又获取成本高昂,因为注释是一项耗时费力的任务。因此,本文提出了一种结合基于深度神经网络的生成对抗训练的半监督学习框架,该框架可以在有限的带注释数据情况下提高分类模型的性能。所提出的NAS - SGAN模型由判别器和生成器模型组成,它们使用带标签和无标签样本以对抗方式进行训练。判别器模型被设计为一个堆叠在共享模型参数的监督模型之上的无监督模型,并通过提取判别特征来学习数据分布。生成器模型基于复合GAN架构在一个稳定的特征匹配目标函数上进行训练,并且首次探索将半监督GAN模型用于乳腺癌分级。实验分析表明,即使在标记样本数量有限的情况下,所提出的模型也能更好地区分不同的癌症分级,从而提高系统的鲁棒性和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验