Suppr超能文献

数字有机体与进化细胞自动机的共同进化研究。

A Study of the Coevolution of Digital Organisms with an Evolutionary Cellular Automaton.

作者信息

Falgueras-Cano Javier, Falgueras-Cano Juan-Antonio, Moya Andrés

机构信息

Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, 46980 Valencia, Spain.

Department of Languages and Computer Science, University of Málaga, 29017 Málaga, Spain.

出版信息

Biology (Basel). 2021 Nov 7;10(11):1147. doi: 10.3390/biology10111147.

Abstract

This paper presents an Evolutionary Cellular Automaton (ECA) that simulates the evolutionary dynamics of biological interactions by manipulating strategies of dispersion and associations between digital organisms. The parameterization of the different types of interaction and distribution strategies using configuration files generates easily interpretable results. In that respect, ECA is an effective instrument for measuring the effects of relative adaptive advantages and a good resource for studying natural selection. Although ECA works effectively in obtaining the expected results from most well-known biological interactions, some unexpected effects were observed. For example, organisms uniformly distributed in fragmented habitats do not favor eusociality, and mutualism evolved from parasitism simply by varying phenotypic flexibility. Finally, we have verified that natural selection represents a cost for the emergence of sex by destabilizing the stable evolutionary strategy of the 1:1 sex ratio after generating randomly different distributions in each generation.

摘要

本文提出了一种进化细胞自动机(ECA),它通过操纵数字生物体之间的分散和关联策略来模拟生物相互作用的进化动态。使用配置文件对不同类型的相互作用和分布策略进行参数化,可生成易于解释的结果。在这方面,ECA是衡量相对适应性优势影响的有效工具,也是研究自然选择的良好资源。尽管ECA在从大多数著名的生物相互作用中有效获得预期结果方面发挥了作用,但也观察到了一些意外效果。例如,在碎片化栖息地中均匀分布的生物体不利于群居性,互利共生仅通过改变表型灵活性就从寄生进化而来。最后,我们已经证实,自然选择通过在每一代中随机生成不同分布后破坏1:1性别比的稳定进化策略,对性别的出现构成了一种代价。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8059/8614957/0d03ec4fbc76/biology-10-01147-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验