Suppr超能文献

进化创新的非适应性起源增加了相互作用的数字生物体网络的复杂性。

Non-adaptive origins of evolutionary innovations increase network complexity in interacting digital organisms.

机构信息

Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland

Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735). doi: 10.1098/rstb.2016.0431.

Abstract

The origin of evolutionary innovations is a central problem in evolutionary biology. To what extent such innovations have adaptive or non-adaptive origins is hard to assess in real organisms. This limitation, however, can be overcome using digital organisms, i.e. self-replicating computer programs that mutate, evolve and coevolve within a user-defined computational environment. Here, we quantify the role of the non-adaptive origins of host resistance traits in determining the evolution of ecological interactions among host and parasite digital organisms. We find that host resistance traits arising spontaneously as exaptations increase the complexity of antagonistic host-parasite networks. Specifically, they lead to higher host phenotypic diversification, a larger number of ecological interactions and higher heterogeneity in interaction strengths. Given the potential of network architecture to affect network dynamics, such exaptations may increase the persistence of entire communities. Our approach, therefore, may complement current theoretical advances aimed at disentangling the ecological and evolutionary mechanisms shaping species interaction networks.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.

摘要

进化创新的起源是进化生物学中的一个核心问题。在实际生物体中,很难评估此类创新具有适应性起源还是非适应性起源。然而,使用数字生物体可以克服这一限制,即自我复制的计算机程序,它们在用户定义的计算环境中突变、进化和共同进化。在这里,我们量化了宿主抗性特征的非适应性起源在确定宿主和寄生虫数字生物体之间生态相互作用的进化中的作用。我们发现,作为适应的自发出现的宿主抗性特征增加了宿主-寄生虫拮抗网络的复杂性。具体来说,它们导致更高的宿主表型多样化、更多的生态相互作用和更强的相互作用强度的更高异质性。鉴于网络架构具有影响网络动态的潜力,这种适应可能会增加整个群落的持久性。因此,我们的方法可以补充当前旨在解开塑造物种相互作用网络的生态和进化机制的理论进展。本文是“从细胞到社会的创新中的过程和模式”专题的一部分。

相似文献

3
Evolving digital ecological networks.演进中的数字生态网络。
PLoS Comput Biol. 2013;9(3):e1002928. doi: 10.1371/journal.pcbi.1002928. Epub 2013 Mar 7.
9
Indirect effects drive coevolution in mutualistic networks.间接效应驱动互惠共生网络中的协同进化。
Nature. 2017 Oct 26;550(7677):511-514. doi: 10.1038/nature24273. Epub 2017 Oct 18.

本文引用的文献

1
3
Innovation: an emerging focus from cells to societies.创新:从细胞到社会的新兴焦点。
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735). doi: 10.1098/rstb.2016.0414.
5
The genotype-phenotype map of an evolving digital organism.一种不断进化的数字有机体的基因型-表型图谱。
PLoS Comput Biol. 2017 Feb 27;13(2):e1005414. doi: 10.1371/journal.pcbi.1005414. eCollection 2017 Feb.
8
Evolutionary transitions during RNA virus experimental evolution.RNA病毒实验进化过程中的进化转变。
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2015.0441.
9
Coevolution drives the emergence of complex traits and promotes evolvability.协同进化推动复杂性状的出现并促进进化能力。
PLoS Biol. 2014 Dec 16;12(12):e1002023. doi: 10.1371/journal.pbio.1002023. eCollection 2014 Dec.
10
Network-level architecture and the evolutionary potential of underground metabolism.网络级架构与地下代谢的进化潜力。
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11762-7. doi: 10.1073/pnas.1406102111. Epub 2014 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验