Suppr超能文献

通过单分子力谱对蛋白质三叶结进行机械收紧、解开和重新打结

Mechanically tightening, untying and retying a protein trefoil knot by single-molecule force spectroscopy.

作者信息

Wang Han, Li Hongbin

机构信息

Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada

出版信息

Chem Sci. 2020 Oct 19;11(46):12512-12521. doi: 10.1039/d0sc02796k.

Abstract

Knotted conformation is one of the most surprising topological features found in proteins, and understanding the folding mechanism of such knotted proteins remains a challenge. Here, we used optical tweezers (OT) to investigate the mechanical unfolding and folding behavior of a knotted protein tRNA (guanosine-1) methyltransferase (TrmD). We found that when stretched from its N- and C-termini, TrmD can be mechanically unfolded and stretched into a tightened trefoil knot, which is composed of 17 residues. Stretching of the unfolded TrmD involved a compaction process of the trefoil knot at low forces. The unfolding pathways of the TrmD were bifurcated, involving two-state and three-state pathways. Upon relaxation, the tightened trefoil knot loosened up first, leading to the expansion of the knot, and the unfolded TrmD can then fold back to its native state efficiently. By using an engineered truncation TrmD variant, we stretched TrmD along a pulling direction to allow us to mechanically unfold TrmD and untie the trefoil knot. We found that the folding of TrmD from its unfolded polypeptide without the knot is significantly slower. The knotting is the rate-limiting step of the folding of TrmD. Our results highlighted the critical importance of the knot conformation for the folding and stability of TrmD, offering a new perspective to understand the role of the trefoil knot in the biological function of TrmD.

摘要

纽结构象是蛋白质中发现的最令人惊讶的拓扑特征之一,而理解此类纽结蛋白的折叠机制仍然是一项挑战。在这里,我们使用光镊来研究纽结蛋白tRNA(鸟苷-1)甲基转移酶(TrmD)的机械解折叠和折叠行为。我们发现,当从其N端和C端拉伸时,TrmD可以被机械解折叠并拉伸成一个由17个残基组成的紧密三叶纽结。未折叠的TrmD的拉伸在低力下涉及三叶纽结的压缩过程。TrmD的解折叠途径是分叉的,涉及两态和三态途径。在松弛时,紧密的三叶纽结首先松开,导致纽结膨胀,然后未折叠的TrmD可以有效地折叠回其天然状态。通过使用一种工程截短的TrmD变体,我们沿着一个拉伸方向拉伸TrmD,以使我们能够机械地解折叠TrmD并解开三叶纽结。我们发现,没有纽结的未折叠多肽折叠成TrmD的速度明显较慢。纽结是TrmD折叠的限速步骤。我们的结果突出了纽结构象对TrmD折叠和稳定性的至关重要性,为理解三叶纽结在TrmD生物学功能中的作用提供了一个新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d0/8162576/05f0e07e11b4/d0sc02796k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验