Mancisidor Betsy, Cruz Alan, Gutiérrez Gustavo, Burgos Alonso, Morón Jonathan Alejandro, Wurzinger Maria, Gutiérrez Juan Pablo
Departamento de Producción Animal, Universidad Nacional Agraria La Molina, Lima 12056, Peru.
Centro Genético de Pacomarca-Inca Tops S.A., Miguel Forga 348, Arequipa 04001, Peru.
Animals (Basel). 2021 Oct 26;11(11):3052. doi: 10.3390/ani11113052.
Improving textile characteristics is the main objective of alpaca breeding. A recently developed SNP chip for alpacas could potentially be used to implement genomic selection and accelerate genetic progress. Therefore, this study aimed to compare the increase in prediction accuracy of three important fiber traits: fiber diameter (FD), standard deviation of fiber diameter (SD), and percentage of medullation (PM) in Huacaya alpacas. The data contains a total pedigree of 12,431 animals, 24,169 records for FD and SD, and 8386 records for PM and 60,624 SNP markers for each of the 431 genotyped animals of the Pacomarca Genetic Center. Prediction accuracy of breeding values was compared between a classical BLUP and a single-step Genomic BLUP (ssGBLUP). Deregressed phenotypes were predicted. The accuracies of the genetic and genomic values were calculated using the correlation between the predicted breeding values and the deregressed values of 100 randomly selected animals from the genotyped ones. Fifty replicates were carried out. Accuracies with ssGBLUP improved by 2.623%, 6.442%, and 1.471% on average for FD, SD, and PM, respectively, compared to the BLUP method. The increase in accuracy was relevant, suggesting that adding genomic data could benefit alpaca breeding programs.
改善纺织特性是羊驼育种的主要目标。最近开发的一种羊驼单核苷酸多态性(SNP)芯片有可能用于实施基因组选择并加速遗传进展。因此,本研究旨在比较瓦卡亚羊驼三种重要纤维性状的预测准确性提升情况,这三种性状分别为纤维直径(FD)、纤维直径标准差(SD)和髓质化百分比(PM)。数据包含12431只动物的完整系谱、24169条FD和SD记录、8386条PM记录以及帕科马尔卡遗传中心431只基因分型动物中每只动物的60624个SNP标记。比较了经典最佳线性无偏预测(BLUP)和单步基因组BLUP(ssGBLUP)之间育种值的预测准确性。对去回归后的表型进行了预测。利用预测育种值与从基因分型动物中随机选取的100只动物的去回归值之间的相关性,计算了遗传值和基因组值的准确性。进行了50次重复。与BLUP方法相比,ssGBLUP对FD、SD和PM的准确性平均分别提高了2.623%、6.442%和1.471%。准确性的提高具有重要意义,表明添加基因组数据可能有益于羊驼育种计划。