Zhang Jin, Wang Jie, Li Qinghe, Wang Qiao, Wen Jie, Zhao Guiping
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
State Key Laboratory of Animal Nutrition, Beijing 100193, China.
Animals (Basel). 2020 Mar 3;10(3):419. doi: 10.3390/ani10030419.
Poultry diseases pose a large threat to poultry production. Selection to improve immune traits is a feasible way to prevent and control avian diseases. The objective of this study was to investigate the efficiency of estimation of genetic parameters for antibody response to avian influenza virus (Ab-AIV), antibody response to Newcastle disease virus (Ab-NDV), sheep red blood cell antibody titer (SRBC), the ratio of heterophils to lymphocytes (H/L), immunoglobulin G (IgG), the spleen immune index (SII), thymus immune index (TII), thymus weight at 100 d (TW) and the spleen weight at 100 d (SW) in Beijing oil chickens, by using the best linear unbiased prediction (BLUP) method and genomic best linear unbiased prediction (GBLUP) method. The phenotypic data used in the two methods were the same and were from 519 individuals. With the BLUP model, Ab-AIV, Ab-NDV, SRBC, H/L, IgG, TII, and TW had low heritability ranging from 0.000 to 0.281, whereas SII and SW had high heritability of 0.631 and 0.573. With the GBLUP model, all individuals were genotyped with Illumina 60K SNP chips, and Ab-AIV, Ab-NDV, SRBC, H/L and IgG had low heritability ranging from 0.000 to 0.266, whereas SII, TII, TW and SW had moderate heritability ranging from 0.300 to 0.472. We compared the prediction accuracy obtained from BLUP and GBLUP through 50 time 5-fold cross-validation (CV), and the results indicated that BLUP provided a slightly higher accuracy of prediction than GBLUP in this population.
家禽疾病对家禽生产构成了巨大威胁。通过选育来改善免疫性状是预防和控制禽类疾病的一种可行方法。本研究的目的是利用最佳线性无偏预测(BLUP)方法和基因组最佳线性无偏预测(GBLUP)方法,研究北京油鸡对禽流感病毒抗体反应(Ab-AIV)、对新城疫病毒抗体反应(Ab-NDV)、绵羊红细胞抗体效价(SRBC)、异嗜性粒细胞与淋巴细胞比例(H/L)、免疫球蛋白G(IgG)、脾脏免疫指数(SII)、胸腺免疫指数(TII)、100日龄胸腺重量(TW)和100日龄脾脏重量(SW)的遗传参数估计效率。两种方法使用的表型数据相同,均来自519只个体。采用BLUP模型时,Ab-AIV、Ab-NDV、SRBC、H/L、IgG、TII和TW的遗传力较低,范围为0.000至0.281,而SII和SW的遗传力较高,分别为0.631和0.573。采用GBLUP模型时,所有个体均用Illumina 60K SNP芯片进行基因分型,Ab-AIV、Ab-NDV、SRBC、H/L和IgG的遗传力较低,范围为0.000至0.266,而SII、TII、TW和SW的遗传力中等,范围为0.300至0.472。我们通过50次5倍交叉验证(CV)比较了BLUP和GBLUP获得的预测准确性,结果表明在该群体中BLUP的预测准确性略高于GBLUP。