Suppr超能文献

混合可见光通信/射频系统中基于模型压缩的联邦学习无线网络优化

Wireless Network Optimization for Federated Learning with Model Compression in Hybrid VLC/RF Systems.

作者信息

Huang Wuwei, Yang Yang, Chen Mingzhe, Liu Chuanhong, Feng Chunyan, Poor H Vincent

机构信息

Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Entropy (Basel). 2021 Oct 27;23(11):1413. doi: 10.3390/e23111413.

Abstract

In this paper, the optimization of network performance to support the deployment of federated learning (FL) is investigated. In particular, in the considered model, each user owns a machine learning (ML) model by training through its own dataset, and then transmits its ML parameters to a base station (BS) which aggregates the ML parameters to obtain a global ML model and transmits it to each user. Due to limited radio frequency (RF) resources, the number of users that participate in FL is restricted. Meanwhile, each user uploading and downloading the FL parameters may increase communication costs thus reducing the number of participating users. To this end, we propose to introduce visible light communication (VLC) as a supplement to RF and use compression methods to reduce the resources needed to transmit FL parameters over wireless links so as to further improve the communication efficiency and simultaneously optimize wireless network through user selection and resource allocation. This user selection and bandwidth allocation problem is formulated as an optimization problem whose goal is to minimize the training loss of FL. We first use a model compression method to reduce the size of FL model parameters that are transmitted over wireless links. Then, the optimization problem is separated into two subproblems. The first subproblem is a user selection problem with a given bandwidth allocation, which is solved by a traversal algorithm. The second subproblem is a bandwidth allocation problem with a given user selection, which is solved by a numerical method. The ultimate user selection and bandwidth allocation are obtained by iteratively compressing the model and solving these two subproblems. Simulation results show that the proposed FL algorithm can improve the accuracy of object recognition by up to 16.7% and improve the number of selected users by up to 68.7%, compared to a conventional FL algorithm using only RF.

摘要

本文研究了支持联邦学习(FL)部署的网络性能优化问题。具体而言,在所考虑的模型中,每个用户通过使用自己的数据集进行训练来拥有一个机器学习(ML)模型,然后将其ML参数传输到基站(BS),基站聚合这些ML参数以获得全局ML模型并将其传输给每个用户。由于射频(RF)资源有限,参与联邦学习的用户数量受到限制。同时,每个用户上传和下载联邦学习参数可能会增加通信成本,从而减少参与用户的数量。为此,我们建议引入可见光通信(VLC)作为射频的补充,并使用压缩方法来减少通过无线链路传输联邦学习参数所需的资源,从而进一步提高通信效率,并同时通过用户选择和资源分配来优化无线网络。这个用户选择和带宽分配问题被表述为一个优化问题,其目标是最小化联邦学习的训练损失。我们首先使用一种模型压缩方法来减小通过无线链路传输的联邦学习模型参数的大小。然后,将优化问题分解为两个子问题。第一个子问题是在给定带宽分配下的用户选择问题,通过遍历算法求解。第二个子问题是在给定用户选择下的带宽分配问题,通过数值方法求解。通过迭代压缩模型并求解这两个子问题,最终得到用户选择和带宽分配结果。仿真结果表明,与仅使用射频的传统联邦学习算法相比,所提出的联邦学习算法可将目标识别准确率提高高达16.7%,并将所选用户数量提高高达68.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/204e/8622686/9ccc7668cee5/entropy-23-01413-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验