Suppr超能文献

基于I型删失的指数分布的最小消息长度推断

Minimum Message Length Inference of the Exponential Distribution with Type I Censoring.

作者信息

Makalic Enes, Schmidt Daniel Francis

机构信息

Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3010, Australia.

Faculty of Information Technology, Monash University, Clayton, VIC 3168, Australia.

出版信息

Entropy (Basel). 2021 Oct 30;23(11):1439. doi: 10.3390/e23111439.

Abstract

Data with censoring is common in many areas of science and the associated statistical models are generally estimated with the method of maximum likelihood combined with a model selection criterion such as Akaike's information criterion. This manuscript demonstrates how the information theoretic minimum message length principle can be used to estimate statistical models in the presence of type I random and fixed censoring data. The exponential distribution with fixed and random censoring is used as an example to demonstrate the process where we observe that the minimum message length estimate of mean survival time has some advantages over the standard maximum likelihood estimate.

摘要

带有删失的数据在许多科学领域都很常见,相关的统计模型通常采用最大似然法结合赤池信息准则等模型选择标准来估计。本文展示了信息论最小消息长度原理如何用于在存在I型随机和固定删失数据的情况下估计统计模型。以具有固定和随机删失的指数分布为例来说明这个过程,在此过程中我们观察到平均生存时间的最小消息长度估计相对于标准最大似然估计具有一些优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf1c/8619802/cce0eec70842/entropy-23-01439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验