Alotaibi Naif, Hashem Atef F, Elbatal Ibrahim, Alyami Salem A, Al-Moisheer A S, Elgarhy Mohammed
Department of Mathematics and Statistics, College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia.
Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
Entropy (Basel). 2022 Jul 27;24(8):1033. doi: 10.3390/e24081033.
In this article, a new one parameter survival model is proposed using the Kavya-Manoharan (KM) transformation family and the inverse length biased exponential (ILBE) distribution. Statistical properties are obtained: quantiles, moments, incomplete moments and moment generating function. Different types of entropies such as Rényi entropy, Tsallis entropy, Havrda and Charvat entropy and Arimoto entropy are computed. Different measures of extropy such as extropy, cumulative residual extropy and the negative cumulative residual extropy are computed. When the lifetime of the item under use is assumed to follow the Kavya-Manoharan inverse length biased exponential (KMILBE) distribution, the progressive-stress accelerated life tests are considered. Some estimating approaches, such as the maximum likelihood, maximum product of spacing, least squares, and weighted least square estimations, are taken into account while using progressive type-II censoring. Furthermore, interval estimation is accomplished by determining the parameters' approximate confidence intervals. The performance of the estimation approaches is investigated using Monte Carlo simulation. The relevance and flexibility of the model are demonstrated using two real datasets. The distribution is very flexible, and it outperforms many known distributions such as the inverse length biased, the inverse Lindley model, the Lindley, the inverse exponential, the sine inverse exponential and the sine inverse Rayleigh model.
在本文中,利用卡维亚 - 马诺哈兰(KM)变换族和逆长度偏置指数(ILBE)分布提出了一种新的单参数生存模型。获得了统计性质:分位数、矩、不完全矩和矩生成函数。计算了不同类型的熵,如雷尼熵、Tsallis熵、哈弗达和查尔瓦特熵以及有元熵。计算了不同的外熵度量,如外熵、累积剩余外熵和负累积剩余外熵。当假设使用中物品的寿命服从卡维亚 - 马诺哈兰逆长度偏置指数(KMILBE)分布时,考虑了渐进应力加速寿命试验。在使用渐进II型截尾时,考虑了一些估计方法,如最大似然估计、最大间距乘积估计、最小二乘估计和加权最小二乘估计。此外,通过确定参数的近似置信区间来完成区间估计。使用蒙特卡罗模拟研究了估计方法的性能。使用两个真实数据集证明了该模型的相关性和灵活性。该分布非常灵活,并且优于许多已知分布,如逆长度偏置分布、逆林德利模型、林德利模型、逆指数分布、正弦逆指数分布和正弦逆瑞利模型。