Suppr超能文献

基于可见-近红外光谱结合机器学习技术的谷子地理起源判别

Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques.

作者信息

Kabir Muhammad Hilal, Guindo Mahamed Lamine, Chen Rongqin, Liu Fei

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.

Department of Agricultural and Bioresource Engineering, Abubakar Tafawa Balewa University, Bauchi PMB 0248, Nigeria.

出版信息

Foods. 2021 Nov 11;10(11):2767. doi: 10.3390/foods10112767.

Abstract

Millet is a primary food for people living in the dry and semi-dry regions and is dispersed within most parts of Europe, Africa, and Asian countries. As part of the European Union (EU) efforts to establish food originality, there is a global need to create Protected Geographical Indication (PGI) and Protected Designation of Origin (PDO) of crops and agricultural products to ensure the integrity of the food supply. In the present work, Visible and Near-Infrared Spectroscopy (Vis-NIR) combined with machine learning techniques was used to discriminate 16 millet varieties ( = 480) originating from various regions of China. Five different machine learning algorithms, namely, K-nearest neighbor (K-NN), Linear discriminant analysis (LDA), Logistic regression (LR), Random Forest (RF), and Support vector machine (SVM), were used to train the NIR spectra of these millet samples and to assess their discrimination performance. Visible cluster trends were obtained from the Principal Component Analysis (PCA) of the spectral data. Cross-validation was used to optimize the performance of the models. Overall, the F-Score values were as follows: SVM with 99.5%, accompanied by RF with 99.5%, LDA with 99.5%, K-NN with 99.1%, and LR with 98.8%. Both the linear and non-linear algorithms yielded positive results, but the non-linear models appear slightly better. The study revealed that applying Vis-NIR spectroscopy assisted by machine learning technique can be an essential tool for tracing the origins of millet, contributing to a safe authentication method in a quick, relatively cheap, and non-destructive way.

摘要

小米是生活在干旱和半干旱地区人们的主要食物,分布在欧洲、非洲和亚洲国家的大部分地区。作为欧盟建立食品原产地标识的努力的一部分,全球需要为农作物和农产品创建受保护的地理标志(PGI)和原产地名称保护(PDO),以确保食品供应的完整性。在本研究中,可见-近红外光谱(Vis-NIR)结合机器学习技术用于鉴别来自中国不同地区的16个小米品种( = 480)。使用了五种不同的机器学习算法,即K近邻(K-NN)、线性判别分析(LDA)、逻辑回归(LR)、随机森林(RF)和支持向量机(SVM),对这些小米样品的近红外光谱进行训练,并评估它们的鉴别性能。从光谱数据的主成分分析(PCA)中获得可见聚类趋势。采用交叉验证来优化模型的性能。总体而言,F分数值如下:支持向量机为99.5%,随机森林为99.5%,线性判别分析为99.5%,K近邻为99.1%,逻辑回归为98.8%。线性和非线性算法均产生了积极的结果,但非线性模型似乎略胜一筹。该研究表明,应用机器学习技术辅助的可见-近红外光谱可以成为追踪小米产地的重要工具,以快速、相对廉价和无损的方式促成一种安全的认证方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/277f/8623769/033cc7f4c3f5/foods-10-02767-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验