Suppr超能文献

利用可见及近红外光谱结合气相色谱-质谱代谢组学解析估算番茄的感官品质

Estimating the sensory qualities of tomatoes using visible and near-infrared spectroscopy and interpretation based on gas chromatography-mass spectrometry metabolomics.

机构信息

Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan.

Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan.

出版信息

Food Chem. 2021 May 1;343:128470. doi: 10.1016/j.foodchem.2020.128470. Epub 2020 Oct 24.

Abstract

The ability to estimate the sensory quality of intact tomatoes rapidly and non-destructively using visible and near-infrared spectroscopy (Vis-NIRS) is important for the tomato industry. In this study, a combination of partial least squares regression (PLSR) analysis and the stepwise selectivity ratio (SWSR) method was used to study the ability of Vis-NIRS to predict 19 sensory attributes in intact tomatoes. The PLSR models constructed based on the informative wavelengths selected by the SWSR method predicted 8 sensory attributes well, particularly the sweetness attribute (correlation coefficient of validation of 0.92). Moreover, based on the tomato metabolites determined by GC-MS analysis, high intercorrelations between sensory attributes, metabolites, and the selected informative wavelengths were found through principal component analysis, as well as the high correlation coefficients between them. The results confirm the feasibility and reliability of Vis-NIRS and the informative wavelengths selected by SWSR to predict the sensory quality of whole tomatoes.

摘要

利用可见近红外光谱(Vis-NIRS)快速无损地评估完整番茄的感官品质,对于番茄产业而言非常重要。本研究采用偏最小二乘回归(PLSR)分析与逐步选择性比(SWSR)方法相结合,研究 Vis-NIRS 预测完整番茄 19 个感官属性的能力。基于 SWSR 方法选择的信息波长构建的 PLSR 模型能够很好地预测 8 个感官属性,特别是甜度属性(验证相关系数为 0.92)。此外,通过 GC-MS 分析确定的番茄代谢物的主成分分析表明,感官属性、代谢物和所选信息波长之间存在高度的相关性,并且它们之间的相关系数也很高。这些结果证实了 Vis-NIRS 和 SWSR 选择的信息波长预测整个番茄感官品质的可行性和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验