Suppr超能文献

磷饥饿和锌过量诱导的AsZIP2锌转运蛋白受到丛枝菌根共生的抑制。

Phosphorus Starvation- and Zinc Excess-Induced AsZIP2 Zinc Transporter Is Suppressed by Arbuscular Mycorrhizal Symbiosis.

作者信息

Xie Xianan, Fan Xiaoning, Chen Hui, Tang Ming

机构信息

State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.

出版信息

J Fungi (Basel). 2021 Oct 22;7(11):892. doi: 10.3390/jof7110892.

Abstract

Zinc (Zn) is one of the most essential micronutrients for plant growth and metabolism, but Zn excess can impair many basic metabolic processes in plant cells. In agriculture, crops often experience low phosphate (Pi) and high Zn double nutrient stresses because of inordinate agro-industrial activities, while the dual benefit of arbuscular mycorrhizal (AM) fungi protects plants from experiencing both deficient and toxic nutrient stresses. Although crosstalk between Pi and Zn nutrients in plants have been extensively studied at the physiological level, the molecular basis of how Pi starvation triggers Zn over-accumulation in plants and how AM plants coordinately modulate the Pi and Zn nutrient homeostasis remains to be elucidated. Here, we report that a novel gene, a Chinese milk vetch () member of the gene family, participates in the interaction between Pi and Zn nutrient homeostasis in plants. Phylogenetic analysis revealed that this AsZIP2 protein was closely related to the orthologous Medicago MtZIP2 and Arabidopsis AtZIP2 transporters. Gene expression analysis indicated that was highly induced in roots by Pi starvation or Zn excess yet attenuated by arbuscular mycorrhization in a Pi-dependent manner. Subcellular localization and heterologous expression experiments further showed that encoded a functional plasma membrane-localized transporter that mediated Zn uptake in yeast. Moreover, overexpression of in resulted in the over-accumulation of Zn concentration in roots at low Pi or excessive Zn concentrations, whereas silencing lines displayed an even more reduced Zn concentration than control lines under such conditions. Our results reveal that the AsZIP2 transporter functioned in Zn over-accumulation in roots during Pi starvation or high Zn supply but was repressed by AM symbiosis in a Pi-dependent manner. These findings also provide new insights into the gene acting in the regulation of Zn homeostasis in mycorrhizal plants through Pi signal.

摘要

锌(Zn)是植物生长和代谢所必需的微量营养素之一,但锌过量会损害植物细胞中的许多基本代谢过程。在农业中,由于过度的农业工业活动,作物经常遭受低磷(Pi)和高锌双重养分胁迫,而丛枝菌根(AM)真菌的双重益处可保护植物免受养分缺乏和毒性胁迫。尽管植物中磷和锌养分之间的相互作用已在生理水平上得到广泛研究,但磷饥饿如何触发植物中锌的过度积累以及AM植物如何协调调节磷和锌养分稳态的分子基础仍有待阐明。在这里,我们报告了一个新基因,即紫云英(Astragalus sinicus)中ZIP基因家族的一个成员,参与植物中磷和锌养分稳态的相互作用。系统发育分析表明,这种AsZIP2蛋白与直系同源的苜蓿MtZIP2和拟南芥AtZIP2转运蛋白密切相关。基因表达分析表明,AsZIP2在根中受到磷饥饿或锌过量的高度诱导,但以磷依赖的方式被丛枝菌根化减弱。亚细胞定位和异源表达实验进一步表明,AsZIP2编码一种功能性的质膜定位转运蛋白,介导酵母中的锌吸收。此外,在低磷或锌浓度过高的条件下,在拟南芥中过表达AsZIP2导致根中锌浓度过度积累,而在这种条件下,AsZIP2沉默株系的锌浓度比对照株系更低。我们的结果表明,AsZIP2转运蛋白在磷饥饿或高锌供应期间在根中锌的过度积累中起作用,但以磷依赖的方式被AM共生抑制。这些发现也为ZIP基因通过磷信号调控菌根植物锌稳态提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验