Keelson Benyameen, Buzzatti Luca, Ceranka Jakub, Gutiérrez Adrián, Battista Simone, Scheerlinck Thierry, Van Gompel Gert, De Mey Johan, Cattrysse Erik, Buls Nico, Vandemeulebroucke Jef
Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium.
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.
Diagnostics (Basel). 2021 Nov 7;11(11):2062. doi: 10.3390/diagnostics11112062.
Dynamic computer tomography (CT) is an emerging modality to analyze in-vivo joint kinematics at the bone level, but it requires manual bone segmentation and, in some instances, landmark identification. The objective of this study is to present an automated workflow for the assessment of three-dimensional in vivo joint kinematics from dynamic musculoskeletal CT images. The proposed method relies on a multi-atlas, multi-label segmentation and landmark propagation framework to extract bony structures and detect anatomical landmarks on the CT dataset. The segmented structures serve as regions of interest for the subsequent motion estimation across the dynamic sequence. The landmarks are propagated across the dynamic sequence for the construction of bone embedded reference frames from which kinematic parameters are estimated. We applied our workflow on dynamic CT images obtained from 15 healthy subjects on two different joints: thumb base ( = 5) and knee ( = 10). The proposed method resulted in segmentation accuracies of 0.90 ± 0.01 for the thumb dataset and 0.94 ± 0.02 for the knee as measured by the Dice score coefficient. In terms of motion estimation, mean differences in cardan angles between the automated algorithm and manual segmentation, and landmark identification performed by an expert were below 1°. Intraclass correlation (ICC) between cardan angles from the algorithm and results from expert manual landmarks ranged from 0.72 to 0.99 for all joints across all axes. The proposed automated method resulted in reproducible and reliable measurements, enabling the assessment of joint kinematics using 4DCT in clinical routine.
动态计算机断层扫描(CT)是一种新兴的用于在骨水平分析体内关节运动学的方法,但它需要手动进行骨分割,并且在某些情况下还需要识别标志点。本研究的目的是提出一种从动态肌肉骨骼CT图像评估三维体内关节运动学的自动化工作流程。所提出的方法依赖于多图谱、多标签分割和标志点传播框架,以在CT数据集中提取骨结构并检测解剖标志点。分割后的结构作为后续动态序列运动估计的感兴趣区域。标志点在动态序列中传播,用于构建嵌入骨的参考系,从中估计运动学参数。我们将工作流程应用于从15名健康受试者的两个不同关节(拇指基部,n = 5;膝关节,n = 10)获得的动态CT图像。通过Dice评分系数测量,所提出的方法在拇指数据集上的分割准确率为0.90±0.01,在膝关节上为0.94±0.02。在运动估计方面,自动算法与手动分割以及专家进行的标志点识别之间的万向角平均差异低于1°。算法的万向角与专家手动标志点结果之间的组内相关性(ICC)在所有关节的所有轴上范围为0.72至0.99。所提出的自动化方法产生了可重复且可靠的测量结果,使得在临床常规中能够使用4DCT评估关节运动学。