Suppr超能文献

用于低镁血症住院患者的机器学习共识聚类方法

Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia.

作者信息

Thongprayoon Charat, Sy-Go Janina Paula T, Nissaisorakarn Voravech, Dumancas Carissa Y, Keddis Mira T, Kattah Andrea G, Pattharanitima Pattharawin, Vallabhajosyula Saraschandra, Mao Michael A, Qureshi Fawad, Garovic Vesna D, Dillon John J, Erickson Stephen B, Cheungpasitporn Wisit

机构信息

Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.

Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 01702, USA.

出版信息

Diagnostics (Basel). 2021 Nov 15;11(11):2119. doi: 10.3390/diagnostics11112119.

Abstract

BACKGROUND

The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning approach and to evaluate the mortality risks among these distinct clusters.

METHODS

Consensus cluster analysis was performed based on demographic information, principal diagnoses, comorbidities, and laboratory data in hypomagnesemia (serum magnesium ≤ 1.6 mg/dL) and hypermagnesemia cohorts (serum magnesium ≥ 2.4 mg/dL). Each cluster's key features were determined using the standardized mean difference. The associations of the clusters with hospital mortality and one-year mortality were assessed.

RESULTS

In hypomagnesemia cohort ( = 13,320), consensus cluster analysis identified three clusters. Cluster 1 patients had the highest comorbidity burden and lowest serum magnesium. Cluster 2 patients had the youngest age, lowest comorbidity burden, and highest kidney function. Cluster 3 patients had the oldest age and lowest kidney function. Cluster 1 and cluster 3 were associated with higher hospital and one-year mortality compared to cluster 2. In hypermagnesemia cohort ( = 4671), the analysis identified two clusters. Compared to cluster 1, the key features of cluster 2 included older age, higher comorbidity burden, more hospital admissions primarily due to kidney disease, more acute kidney injury, and lower kidney function. Compared to cluster 1, cluster 2 was associated with higher hospital mortality and one-year mortality.

CONCLUSION

Our cluster analysis identified clinically distinct phenotypes with differing mortality risks in hospitalized patients with dysmagnesemia. Future studies are required to assess the application of this ML consensus clustering approach to care for hospitalized patients with dysmagnesemia.

摘要

背景

本研究的目的是使用无监督机器学习方法将入院时血清镁紊乱的患者分类为不同的聚类,并评估这些不同聚类中的死亡风险。

方法

基于低镁血症(血清镁≤1.6mg/dL)和高镁血症队列(血清镁≥2.4mg/dL)中的人口统计学信息、主要诊断、合并症和实验室数据进行一致性聚类分析。使用标准化平均差确定每个聚类的关键特征。评估聚类与医院死亡率和一年死亡率之间的关联。

结果

在低镁血症队列(n = 13320)中,一致性聚类分析确定了三个聚类。聚类1的患者合并症负担最高,血清镁最低。聚类2的患者年龄最小,合并症负担最低,肾功能最高。聚类3的患者年龄最大,肾功能最低。与聚类2相比,聚类1和聚类3与更高的医院死亡率和一年死亡率相关。在高镁血症队列(n = 4671)中,分析确定了两个聚类。与聚类1相比,聚类2的关键特征包括年龄较大、合并症负担较高、主要因肾脏疾病入院次数较多、急性肾损伤较多以及肾功能较低。与聚类1相比,聚类2与更高的医院死亡率和一年死亡率相关。

结论

我们的聚类分析在住院的镁代谢紊乱患者中识别出了具有不同死亡风险的临床不同表型。未来需要进行研究,以评估这种机器学习一致性聚类方法在护理住院镁代谢紊乱患者中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/8619519/a71cbba00577/diagnostics-11-02119-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验