Suppr超能文献

建模新泽西州 COVID-19 传播的空间异质性和分层暴露干预的影响。

Modeling Effects of Spatial Heterogeneities and Layered Exposure Interventions on the Spread of COVID-19 across New Jersey.

机构信息

Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA.

Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Int J Environ Res Public Health. 2021 Nov 14;18(22):11950. doi: 10.3390/ijerph182211950.

Abstract

COVID-19 created an unprecedented global public health crisis during 2020-2021. The severity of the fast-spreading infection, combined with uncertainties regarding the physical and biological processes affecting transmission of SARS-CoV-2, posed enormous challenges to healthcare systems. Pandemic dynamics exhibited complex spatial heterogeneities across multiple scales, as local demographic, socioeconomic, behavioral and environmental factors were modulating population exposures and susceptibilities. Before effective pharmacological interventions became available, controlling exposures to SARS-CoV-2 was the only public health option for mitigating the disease; therefore, models quantifying the impacts of heterogeneities and alternative exposure interventions on COVID-19 outcomes became essential tools informing policy development. This study used a stochastic SEIR framework, modeling each of the 21 New Jersey counties, to capture important heterogeneities of COVID-19 outcomes across the State. The models were calibrated using confirmed daily deaths and SQMC optimization and subsequently applied in predictive and exploratory modes. The predictions achieved good agreement between modeled and reported death data; counterfactual analysis was performed to assess the effectiveness of layered interventions on reducing exposures to SARS-CoV-2 and thereby fatality of COVID-19. The modeling analysis of the reduction in exposures to SARS-CoV-2 achieved through concurrent social distancing and face-mask wearing estimated that 357 [IQR (290, 429)] deaths per 100,000 people were averted.

摘要

2020-2021 年期间,COVID-19 引发了一场前所未有的全球公共卫生危机。这种快速传播的感染的严重性,加上对影响 SARS-CoV-2 传播的物理和生物过程的不确定性,给医疗保健系统带来了巨大的挑战。大流行动态在多个尺度上表现出复杂的空间异质性,因为当地的人口、社会经济、行为和环境因素正在调节人群的暴露和易感性。在有效的药物干预措施出现之前,控制对 SARS-CoV-2 的暴露是减轻疾病的唯一公共卫生选择;因此,量化异质性和替代暴露干预对 COVID-19 结果影响的模型成为为政策制定提供信息的重要工具。本研究使用随机 SEIR 框架,对新泽西州的 21 个县进行建模,以捕捉该州 COVID-19 结果的重要异质性。使用确诊的每日死亡人数和 SQMC 优化对模型进行校准,然后在预测和探索模式下应用。模型预测与报告的死亡数据之间具有良好的一致性;进行了反事实分析,以评估分层干预措施减少 SARS-CoV-2 暴露并降低 COVID-19 死亡率的效果。通过同时实施社交距离和戴口罩措施来减少 SARS-CoV-2 暴露的建模分析估计,每 10 万人中避免了 357 人(IQR(290,429))死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fa/8618648/c642fca24422/ijerph-18-11950-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验