Suppr超能文献

一种用于焊缝整体三维表征的新方法——为基于深度学习的过程监测铺平道路。

A Novel Approach to the Holistic 3D Characterization of Weld Seams-Paving the Way for Deep Learning-Based Process Monitoring.

作者信息

Schmoeller Maximilian, Stadter Christian, Kick Michael Karl, Geiger Christian, Zaeh Michael Friedrich

机构信息

Institute for Machine Tools and Industrial Management, TUM Department of Mechanical Engineering, School of Engineering & Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.

出版信息

Materials (Basel). 2021 Nov 16;14(22):6928. doi: 10.3390/ma14226928.

Abstract

In an industrial environment, the quality assurance of weld seams requires extensive efforts. The most commonly used methods for that are expensive and time-consuming destructive tests, since quality assurance procedures are difficult to integrate into production processes. Beyond that, available test methods allow only the assessment of a very limited set of characteristics. They are either suitable for determining selected geometric features or for locating and evaluating internal seam defects. The presented work describes an evaluation methodology based on microfocus X-ray computed tomography scans (µCT scans) which enable the 3D characterization of weld seams, including internal defects such as cracks and pores. A 3D representation of the weld contour, i.e., the complete geometry of the joint area in the component with all quality-relevant geometric criteria, is an unprecedented novelty. Both the dimensions of the weld seam and internal defects can be revealed, quantified with a resolution down to a few micrometers and precisely assigned to the welded component. On the basis of the methodology developed within the framework of this study, the results of the scans performed on the alloy AA 2219 can be transferred to other aluminum alloys. In this way, the data evaluation framework can be used to obtain extensive reference data for the calibration and validation of inline process monitoring systems employing Deep Learning-based data processing in the scope of subsequent work.

摘要

在工业环境中,焊缝的质量保证需要付出巨大努力。为此最常用的方法是昂贵且耗时的破坏性测试,因为质量保证程序难以融入生产过程。除此之外,现有的测试方法仅能评估非常有限的一组特性。它们要么适用于确定选定的几何特征,要么适用于定位和评估内部焊缝缺陷。本文介绍了一种基于微焦点X射线计算机断层扫描(µCT扫描)的评估方法,该方法能够对焊缝进行三维表征,包括诸如裂纹和气孔等内部缺陷。焊缝轮廓的三维表示,即部件中具有所有与质量相关几何标准的接头区域的完整几何形状,是一项前所未有的创新。焊缝尺寸和内部缺陷都可以被揭示出来,以低至几微米的分辨率进行量化,并精确地与焊接部件相关联。基于本研究框架内开发的方法,对AA 2219合金进行扫描的结果可以应用于其他铝合金。通过这种方式,数据评估框架可用于获取大量参考数据,以便在后续工作中对采用基于深度学习的数据处理的在线过程监测系统进行校准和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb9/8619111/a4bf8cb21694/materials-14-06928-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验