Suppr超能文献

球体夹杂问题的体积积分方程法求解

Volume Integral Equation Method Solution for Spheroidal Inclusion Problem.

作者信息

Lee Jungki, Han Mingu

机构信息

Department of Mechanical and Design Engineering, Hongik University, Sejong City 30016, Korea.

出版信息

Materials (Basel). 2021 Nov 18;14(22):6996. doi: 10.3390/ma14226996.

Abstract

In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading. The authors hope that the results using the VIEM cited in this paper will be established as reference values for verifying the results of similar research using other analytical and numerical methods.

摘要

本文介绍了体积积分方程法(VIEM),用于对包含各种单一各向同性/各向异性椭球形夹杂的无限各向同性固体进行数值分析。为了将体积积分方程法作为求解三维弹性静力学夹杂问题的通用数值方法引入,首先给出了在均匀远程拉伸载荷作用下,无限各向同性基体中一系列单一各向同性/正交各向异性球形、长椭球形和扁椭球形夹杂的体积积分方程法结果。接下来,我们考虑了在远程剪切载荷作用下,无限各向同性基体中的单一各向同性/正交各向异性球形、长椭球形和扁椭球形夹杂。作者希望本文引用的使用体积积分方程法得到的结果能够作为参考值,用于验证使用其他解析和数值方法进行的类似研究的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1fb/8623314/175e5aa1249e/materials-14-06996-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验