Suppr超能文献

Elastostatics of a spherical inclusion in homogeneous biological media.

作者信息

Bilgen M, Insana M F

机构信息

Department of Radiology, University of Kansas Medical Center, Kansas City 66160-7234, USA.

出版信息

Phys Med Biol. 1998 Jan;43(1):1-20. doi: 10.1088/0031-9155/43/1/001.

Abstract

A three-dimensional spherical inclusion model that approximates a lesion bonded to a tissue matrix is proposed for biomedical elastography. Analytical formulae describing spatial strain and stress distributions generated in infinite media by uniform loading are given under a linear, homogeneous, isotropic elasticity assumption. Strain and stress distributions are also calculated using finite-element analysis (FEA) for a variety of cases to determine the effects of shear modulus distribution, external loading conditions (uniform stress versus uniform displacement), compressor size and matrix dimensions on the elastostatics of the tissue. Analytical strain and stress predictions are shown to agree with the FEA results to within 10% accuracy provided that the matrix dimensions are at least ten times that of the inclusion. Also for these cases, uniform-stress boundary conditions can be equivalently represented by uniform displacement of the boundary. Spherical inclusions exhibit a lower efficiency for transferring elastic shear modulus contrast into strain contrast than cylindrical or planar inclusions. Additional compression will increase the strain contrast. However, large compressions also lead to increases in ultrasonic signal decorrelation and strain and stress concentrations in the homogeneous matrix around the inclusion. Although strain concentrations may help describe the boundaries of the inclusion more clearly, they also increase the risk of damaging the tissue. Understanding the strain and stress distributions in a biological tissue containing a lesion is necessary for optimizing the experimental configurations and consequently improving the diagnostic values of elasticity imaging.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验