Nerlich Cornelius, Epalle Nathan H, Seick Philip, Beitz Eric
Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany.
Pharmaceuticals (Basel). 2021 Nov 20;14(11):1191. doi: 10.3390/ph14111191.
spp. malaria parasites in the blood stage draw energy from anaerobic glycolysis when multiplying in erythrocytes. They tap the ample glucose supply of the infected host using the erythrocyte glucose transporter 1, GLUT1, and a hexose transporter, HT, of the parasite's plasma membrane. Per glucose molecule, two lactate anions and two protons are generated as waste that need to be released rapidly from the parasite to prevent blockage of the energy metabolism and acidification of the cytoplasm. Recently, the missing lactate/H cotransporter was identified as a member of the exclusively microbial formate-nitrite transporter family, FNT. Screening of an antimalarial compound selection with unknown targets led to the discovery of specific and potent FNT-inhibitors, i.e., pentafluoro-3-hydroxy-pent-2-en-1-ones. Here, we summarize the discovery and further development of this novel class of antimalarials, their modes of binding and action, circumvention of a putative resistance mutation of the FNT target protein, and suitability for in vivo studies using animal malaria models.
血液阶段的疟原虫在红细胞内增殖时从无氧糖酵解中获取能量。它们利用红细胞葡萄糖转运蛋白1(GLUT1)和疟原虫质膜的己糖转运蛋白(HT)来利用受感染宿主丰富的葡萄糖供应。每一个葡萄糖分子会产生两个乳酸阴离子和两个质子作为废物,这些废物需要迅速从疟原虫中释放出来,以防止能量代谢受阻和细胞质酸化。最近,缺失的乳酸/氢离子共转运蛋白被鉴定为专门的微生物甲酸-亚硝酸盐转运蛋白家族(FNT)的一员。对具有未知靶点的抗疟化合物筛选导致发现了特异性且强效的FNT抑制剂,即五氟-3-羟基-戊-2-烯-1-酮。在此,我们总结了这类新型抗疟药的发现和进一步开发、它们的结合和作用模式、对FNT靶蛋白假定抗性突变的规避以及使用动物疟疾模型进行体内研究的适用性。