Suppr超能文献

利用选择性抑制剂在寄生虫生命周期的不同阶段定义疟原虫己糖转运蛋白的化疗潜力。

Use of a selective inhibitor to define the chemotherapeutic potential of the plasmodial hexose transporter in different stages of the parasite's life cycle.

机构信息

Centre for Infection and Immunity, Division of Clinical Sciences, St. George's, University of London, London SW170RE, United Kingdom.

出版信息

Antimicrob Agents Chemother. 2011 Jun;55(6):2824-30. doi: 10.1128/AAC.01739-10. Epub 2011 Mar 14.

Abstract

During blood infection, malarial parasites use D-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of D-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasite's development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a D-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of D-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC₅₀) of 11 μM. This process was insensitive to the external D-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC₅₀s in the region of 250 μM (the latter in a D-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages.

摘要

在血液感染中,疟原虫利用 D-葡萄糖作为主要能量来源。疟原虫六碳糖转运蛋白(PfHT)介导 D-葡萄糖进入寄生虫,是无性血期寄生虫生存所必需的。最近,在啮齿动物疟原虫模型(Plasmodium berghei)的遗传研究中发现,同源六碳糖转运蛋白(PbHT)在蚊子媒介中寄生虫的整个发育过程中表达,除了在红细胞内发育期间是必需的。在这里,我们使用一种 D-葡萄糖衍生的特异性疟原虫六碳糖转运蛋白抑制剂,化合物 3361,研究了 D-葡萄糖摄取在伯氏疟原虫肝期和传播阶段的重要性。最初,我们使用绿色荧光蛋白(GFP)标记策略证实了 PbHT 在肝期发育过程中的表达。化合物 3361 抑制肝期寄生虫的发育,其 50%抑制浓度(IC₅₀)为 11 μM。这一过程对外部 D-葡萄糖浓度不敏感。此外,化合物 3361 抑制动合子发育和小配子发生,其 IC₅₀ 在 250 μM 左右(后者以 D-葡萄糖敏感的方式)。与我们发现化合物 3361 对媒介寄生虫阶段的影响一致,1 mM 化合物 3361 表现出传播阻断活性。这些数据表明,针对 PfHT 的新型化学治疗干预措施可能对肝期以及血液期有一定程度的传播阶段具有活性。

相似文献

2
Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality.
Mol Microbiol. 2010 Mar;75(6):1402-13. doi: 10.1111/j.1365-2958.2010.07060.x. Epub 2009 Feb 1.
4
Why is the Plasmodium falciparum hexose transporter a promising new drug target?
Expert Opin Ther Targets. 2003 Oct;7(5):593-602. doi: 10.1517/14728222.7.5.593.
5
Validation of the hexose transporter of Plasmodium falciparum as a novel drug target.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7476-9. doi: 10.1073/pnas.1330865100. Epub 2003 Jun 5.
8
The hexose transporter of Plasmodium falciparum is a worthy drug target.
Acta Trop. 2004 Feb;89(3):371-4. doi: 10.1016/j.actatropica.2003.11.003.
10
Triterpenoids as inhibitors of erythrocytic and liver stages of Plasmodium infections.
Bioorg Med Chem. 2011 Dec 15;19(24):7474-81. doi: 10.1016/j.bmc.2011.10.044. Epub 2011 Oct 20.

引用本文的文献

1
Mitochondrial ATP synthesis is essential for efficient gametogenesis in Plasmodium falciparum.
Commun Biol. 2024 Nov 16;7(1):1525. doi: 10.1038/s42003-024-07240-z.
2
An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions.
Proteins. 2022 Oct;90(10):1766-1778. doi: 10.1002/prot.26351. Epub 2022 May 6.
3
An Uninvited Seat at the Dinner Table: How Apicomplexan Parasites Scavenge Nutrients from the Host.
Microorganisms. 2021 Dec 15;9(12):2592. doi: 10.3390/microorganisms9122592.
7
Targeting Channels and Transporters in Protozoan Parasite Infections.
Front Chem. 2018 Mar 27;6:88. doi: 10.3389/fchem.2018.00088. eCollection 2018.
8
The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria.
Front Microbiol. 2017 Nov 16;8:2183. doi: 10.3389/fmicb.2017.02183. eCollection 2017.
9
Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.
PLoS Pathog. 2016 Dec 27;12(12):e1006094. doi: 10.1371/journal.ppat.1006094. eCollection 2016 Dec.
10

本文引用的文献

1
Branched tricarboxylic acid metabolism in Plasmodium falciparum.
Nature. 2010 Aug 5;466(7307):774-8. doi: 10.1038/nature09301.
2
That was then but this is now: malaria research in the time of an eradication agenda.
Science. 2010 May 14;328(5980):862-6. doi: 10.1126/science.1184785.
3
Exploiting the therapeutic potential of Plasmodium falciparum solute transporters.
Trends Parasitol. 2010 Jun;26(6):284-96. doi: 10.1016/j.pt.2010.03.004. Epub 2010 Apr 12.
4
Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality.
Mol Microbiol. 2010 Mar;75(6):1402-13. doi: 10.1111/j.1365-2958.2010.07060.x. Epub 2009 Feb 1.
6
Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.
PLoS One. 2009 Nov 18;4(11):e7881. doi: 10.1371/journal.pone.0007881.
7
Artemisinin-resistant malaria in Asia.
N Engl J Med. 2009 Jul 30;361(5):540-1. doi: 10.1056/NEJMc0900231.
8
Artemisinin resistance in Plasmodium falciparum malaria.
N Engl J Med. 2009 Jul 30;361(5):455-67. doi: 10.1056/NEJMoa0808859.
9
HCV replication suppresses cellular glucose uptake through down-regulation of cell surface expression of glucose transporters.
J Hepatol. 2009 May;50(5):883-94. doi: 10.1016/j.jhep.2008.12.029. Epub 2009 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验