Suppr超能文献

基于机器学习和过采样技术预测耳蜗死区。

Predicting the Cochlear Dead Regions Using a Machine Learning-Based Approach with Oversampling Techniques.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul 01757, Korea.

Communication Sciences and Disorders, James Madison University, Harrisonburg, VA 22807, USA.

出版信息

Medicina (Kaunas). 2021 Nov 2;57(11):1192. doi: 10.3390/medicina57111192.

Abstract

: Determining the presence or absence of cochlear dead regions (DRs) is essential in clinical practice. This study proposes a machine learning (ML)-based model that applies oversampling techniques for predicting DRs in patients. : We used recursive partitioning and regression for classification tree (CT) and logistic regression (LR) as prediction models. To overcome the imbalanced nature of the dataset, oversampling techniques to duplicate examples in the minority class or to synthesize new examples from existing examples in the minority class were adopted, namely the synthetic minority oversampling technique (SMOTE). : The accuracy results of the 10-fold cross-validation of the LR and CT with the original data were 0.82 (±0.02) and 0.93 (±0.01), respectively. The accuracy results of the 10-fold cross-validation of the LR and CT with the oversampled data were 0.66 (±0.02) and 0.86 (±0.01), respectively. : This study is the first to adopt the SMOTE method to assess the role of oversampling methods on audiological datasets and to develop an ML-based model. Considering that the SMOTE method did not improve the model's performance, a more flexible model or more clinical features may be needed.

摘要

确定耳蜗死区 (DR) 的存在与否在临床实践中至关重要。本研究提出了一种基于机器学习 (ML) 的模型,该模型应用了过采样技术来预测患者的 DR。

我们使用递归分区和回归进行分类树 (CT) 和逻辑回归 (LR) 作为预测模型。为了克服数据集的不平衡性质,采用了过采样技术来复制少数类别的示例或从少数类别的现有示例中合成新示例,即合成少数类过采样技术 (SMOTE)。

LR 和 CT 原始数据的 10 折交叉验证的准确性结果分别为 0.82(±0.02)和 0.93(±0.01)。LR 和 CT 过采样数据的 10 折交叉验证的准确性结果分别为 0.66(±0.02)和 0.86(±0.01)。

本研究首次采用 SMOTE 方法评估过采样方法在听力学数据集上的作用,并开发了一种基于 ML 的模型。考虑到 SMOTE 方法并没有提高模型的性能,可能需要更灵活的模型或更多的临床特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b024/8625869/a315404f606d/medicina-57-01192-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验