Suppr超能文献

基于蜉蝣优化算法的混合半无源定位系统最优几何配置算法

An Optimal Geometry Configuration Algorithm of Hybrid Semi-Passive Location System Based on Mayfly Optimization Algorithm.

作者信息

Hu Aihua, Deng Zhongliang, Yang Hui, Zhang Yao, Gao Yuhui, Zhao Di

机构信息

School of Electronic Engineering, Beijing University of Posts and Communications, Beijing 100876, China.

School of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050061, China.

出版信息

Sensors (Basel). 2021 Nov 11;21(22):7484. doi: 10.3390/s21227484.

Abstract

In view of the demand of location awareness in a special complex environment, for an unmanned aerial vehicle (UAV) airborne multi base-station semi-passive positioning system, the hybrid positioning solutions and optimized site layout in the positioning system can effectively improve the positioning accuracy for a specific region. In this paper, the geometric dilution of precision (GDOP) formula of a time difference of arrival (TDOA) and angles of arrival (AOA) hybrid location algorithm is deduced. Mayfly optimization algorithm (MOA) which is a new swarm intelligence optimization algorithm is introduced, and a method to find the optimal station of the UAV airborne multiple base station's semi-passive positioning system using MOA is proposed. The simulation and analysis of the optimization of the different number of base stations, compared with other station layout methods, such as particle swarm optimization (PSO), genetic algorithm (GA), and artificial bee colony (ABC) algorithm. MOA is less likely to fall into local optimum, and the error of regional target positioning is reduced. By simulating the deployment of four base stations and five base stations in various situations, MOA can achieve a better deployment effect. The dynamic station configuration capability of the multi-station semi-passive positioning system has been improved with the UAV.

摘要

针对特殊复杂环境下的位置感知需求,对于无人机(UAV)机载多基站半被动定位系统,定位系统中的混合定位解决方案和优化的站点布局能够有效提高特定区域的定位精度。本文推导了到达时间差(TDOA)和到达角度(AOA)混合定位算法的精度几何因子(GDOP)公式。引入了一种新型群智能优化算法——蜉蝣优化算法(MOA),并提出了一种利用MOA寻找无人机机载多基站半被动定位系统最优站点的方法。对不同数量基站的优化进行了仿真分析,并与粒子群优化(PSO)、遗传算法(GA)和人工蜂群(ABC)算法等其他站点布局方法进行了比较。MOA更不容易陷入局部最优,并且降低了区域目标定位的误差。通过模拟在各种情况下四个基站和五个基站的部署,MOA能够实现更好的部署效果。借助无人机提高了多基站半被动定位系统的动态站点配置能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00de/8625649/46e83e74624f/sensors-21-07484-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验