Suppr超能文献

使用混合多模态深度神经网络的智能手机位置跟踪传感器融合。

Sensor-Fusion for Smartphone Location Tracking Using Hybrid Multimodal Deep Neural Networks.

机构信息

School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.

Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK.

出版信息

Sensors (Basel). 2021 Nov 11;21(22):7488. doi: 10.3390/s21227488.

Abstract

Many engineered approaches have been proposed over the years for solving the hard problem of performing indoor localization using smartphone sensors. However, specialising these solutions for difficult edge cases remains challenging. Here we propose an end-to-end hybrid multimodal deep neural network localization system, MM-Loc, relying on zero hand-engineered features, but learning automatically from data instead. This is achieved by using modality-specific neural networks to extract preliminary features from each sensing modality, which are then combined by cross-modality neural structures. We show that our choice of modality-specific neural architectures can estimate the location independently. But for better accuracy, a multimodal neural network that fuses the features of early modality-specific representations is a better proposition. Our proposed MM-Loc system is tested on cross-modality samples characterised by different sampling rate and data representation (inertial sensors, magnetic and WiFi signals), outperforming traditional approaches for location estimation. MM-Loc elegantly trains directly from data unlike conventional indoor positioning systems, which rely on human intuition.

摘要

多年来,人们提出了许多工程方法来解决使用智能手机传感器进行室内定位的难题。然而,为困难的边缘情况专门化这些解决方案仍然具有挑战性。在这里,我们提出了一种端到端的混合多模态深度神经网络定位系统 MM-Loc,它不依赖于任何手工设计的特征,而是通过数据自动学习。这是通过使用特定于模态的神经网络从每个传感模态中提取初步特征来实现的,然后通过跨模态神经结构对这些特征进行组合。我们表明,我们对特定于模态的神经网络架构的选择可以独立地估计位置。但是为了获得更好的准确性,融合早期特定于模态的表示形式的特征的多模态神经网络是一个更好的选择。我们提出的 MM-Loc 系统在具有不同采样率和数据表示形式的跨模态样本上进行了测试(惯性传感器、磁场和 WiFi 信号),其位置估计性能优于传统方法。与传统的室内定位系统不同,MM-Loc 直接从数据中进行训练,而传统的室内定位系统依赖于人类的直觉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14bb/8624390/b7c2e8ea7ef7/sensors-21-07488-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验