Suppr超能文献

基于功率分割的底层协作认知无线电网络中断分析

Outage Analysis of the Power Splitting Based Underlay Cooperative Cognitive Radio Networks.

作者信息

Tin Phu Tran, Phan Van-Duc, Nguyen Tan N, Tu Lam-Thanh, Minh Bui Vu, Voznak Miroslav, Fazio Peppino

机构信息

Faculty of Electronics Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam.

Faculty of Automobile Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam.

出版信息

Sensors (Basel). 2021 Nov 18;21(22):7653. doi: 10.3390/s21227653.

Abstract

In the present paper, we investigate the performance of the simultaneous wireless information and power transfer (SWIPT) based cooperative cognitive radio networks (CCRNs). In particular, the outage probability is derived in the closed-form expressions under the opportunistic partial relay selection. Different from the conventional CRNs in which the transmit power of the secondary transmitters count merely on the aggregate interference measured on the primary networks, the transmit power of the SWIPT-enabled transmitters is also constrained by the harvested energy. As a result, the mathematical framework involves more correlated random variables and, thus, is of higher complexity. Monte Carlo simulations are given to corroborate the accuracy of the mathematical analysis and to shed light on the behavior of the OP with respect to several important parameters, e.g., the transmit power and the number of relays. Our findings illustrate that increasing the transmit power and/or the number of relays is beneficial for the outage probability.

摘要

在本文中,我们研究了基于同时无线信息与能量传输(SWIPT)的协作认知无线电网络(CCRN)的性能。具体而言,在机会性部分中继选择下,以闭式表达式推导了中断概率。与传统认知无线电网络不同,在传统认知无线电网络中,次要发射机的发射功率仅取决于在主要网络上测得的总干扰,而启用SWIPT的发射机的发射功率还受到收集到的能量的限制。因此,数学框架涉及更多相关随机变量,因而具有更高的复杂性。给出了蒙特卡罗模拟,以证实数学分析的准确性,并阐明中断概率相对于几个重要参数(例如发射功率和中继数量)的行为。我们的研究结果表明,增加发射功率和/或中继数量对中断概率是有益的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1e5/8623526/426a23e7bb0c/sensors-21-07653-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验