Suppr超能文献

用于异构私有边缘云系统的基于机器学习的智能中间件平台设计

Design of a Machine Learning-Based Intelligent Middleware Platform for a Heterogeneous Private Edge Cloud System.

作者信息

Shah Sayed-Chhattan

机构信息

Mobile Grid and Cloud Computing Lab, Department of Information Communication Engineering, Hankuk University of Foreign Studies, Seoul 02450, Korea.

出版信息

Sensors (Basel). 2021 Nov 19;21(22):7701. doi: 10.3390/s21227701.

Abstract

Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments.

摘要

移动技术的最新进展推动了新型智慧城市和第五代(5G)网络应用的发展。这些应用有不同的需求,如低延迟、高数据速率、大量的计算和存储资源,以及对传感器和执行器的访问。为满足这些应用的需求,提出了一种异构私有边缘云系统。所提出的异构私有边缘云系统的特点是具有复杂且动态的多层网络和计算基础设施。对该基础设施进行高效管理和利用可以提高数据速率,并减少数据延迟、数据隐私风险以及到核心互联网的流量。当前研究中提出了一种新颖的智能中间件平台,以高效管理和利用异构私有边缘云基础设施。所提出的平台旨在提供计算、数据收集和数据存储服务,以支持新兴的资源密集型和非资源密集型智慧城市及5G网络应用。其目的是利用回归分析和强化学习方法来解决将异构资源高效分配给应用任务的问题。该平台在动态多层网络基础设施中采用并行传输技术、动态接口分配技术和基于机器学习的算法,以提高网络和应用性能。此外,它使用容器和设备虚拟化技术来解决与异构硬件和执行环境相关的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e4f/8618563/93c644309912/sensors-21-07701-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验