Hajikarimloo Bardia, Mohammadzadeh Ibrahim, Habibi Mohammad Amin, Tos Salem M, Asgarzadeh Ali, Tajvidi Mahboobeh, Aghajani Saba, Hashemi Rana, Kooshki Alireza
Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Neuroradiol J. 2025 May 22:19714009251345104. doi: 10.1177/19714009251345104.
PurposeChronic or shunt-dependent hydrocephalus is a frequent consequence of subarachnoid hemorrhage (SAH) with an unclear pathophysiology, making treatment challenging. Despite favorable outcomes following cerebrospinal fluid (CSF) diversion, high-risk surgical interventions remain necessary in some cases. Accurate prediction of chronic or shunt-dependent hydrocephalus in SAH patients can play an important role in their management. This systematic review and meta-analysis assessed the predictive performance of machine learning (ML) models in forecasting chronic or shunt-dependent hydrocephalus following SAH.MethodsA systematic search of PubMed, Embase, Scopus, and Web of Science was conducted. ML or deep learning (DL)-based models that predicted chronic or shunt-dependent hydrocephalus following SAH were included. To avoid bias, only the data of the best-performance model, which was defined by the highest area under the curve (AUC) of the models, were extracted. The pooled AUC, accuracy (ACC), sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated using the R program.ResultsSix studies with 2096 individuals were included. The AUC, ACC, sensitivity, and specificity ranged from 0.8 to 0.92, 0.72 to 0.9, 0.73 to 0.85, and 0.7 to 0.92. The meta-analysis showed a pooled AUC of 0.83 (95%CI: 0.81-0.84) and ACC of 0.79 (95%CI: 0.66-0.91). The meta-analysis revealed a pooled sensitivity of 0.8 (95%CI: 0.73-0.85), specificity of 0.79 (95%CI: 0.68-0.86), and DOR of 12.13 (95%CI: 8.2-17.96) for predictive performance of these models.ConclusionML-based models showed encouraging predictive performance in forecasting chronic or shunt-dependent hydrocephalus following SAH.
目的
慢性或分流依赖性脑积水是蛛网膜下腔出血(SAH)的常见后果,其病理生理学尚不清楚,这使得治疗具有挑战性。尽管脑脊液(CSF)分流术后预后良好,但在某些情况下仍需要进行高风险的手术干预。准确预测SAH患者的慢性或分流依赖性脑积水对其治疗具有重要意义。本系统评价和荟萃分析评估了机器学习(ML)模型预测SAH后慢性或分流依赖性脑积水的性能。
方法
对PubMed、Embase、Scopus和Web of Science进行系统检索。纳入基于ML或深度学习(DL)预测SAH后慢性或分流依赖性脑积水的模型。为避免偏差,仅提取由模型曲线下面积(AUC)最高所定义的最佳性能模型的数据。使用R程序计算合并的AUC、准确度(ACC)、敏感性、特异性和诊断比值比(DOR)。
结果
纳入6项研究,共2096例个体。AUC、ACC、敏感性和特异性范围分别为0.8至0.92、0.72至0.9、0.73至0.85和0.7至0.92。荟萃分析显示合并AUC为0.83(95%CI:0.81 - 0.84),ACC为0.79(95%CI:0.66 - 0.91)。荟萃分析显示这些模型预测性能的合并敏感性为0.8(95%CI:0.73 - 0.85),特异性为0.79(95%CI:0.68 - 0.86),DOR为12.13(95%CI:8.2 - 17.96)。
结论
基于ML的模型在预测SAH后慢性或分流依赖性脑积水方面表现出令人鼓舞的预测性能。