Suppr超能文献

用于快速场景分割的分层特征提取网络。

A Hierarchical Feature Extraction Network for Fast Scene Segmentation.

机构信息

National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610017, China.

出版信息

Sensors (Basel). 2021 Nov 20;21(22):7730. doi: 10.3390/s21227730.

Abstract

Semantic segmentation is one of the most active research topics in computer vision with the goal to assign dense semantic labels for all pixels in a given image. In this paper, we introduce HFEN (Hierarchical Feature Extraction Network), a lightweight network to reach a balance between inference speed and segmentation accuracy. Our architecture is based on an encoder-decoder framework. The input images are down-sampled through an efficient encoder to extract multi-layer features. Then the extracted features are fused via a decoder, where the global contextual information and spatial information are aggregated for final segmentations with real-time performance. Extensive experiments have been conducted on two standard benchmarks, Cityscapes and Camvid, where our network achieved superior performance on NVIDIA 2080Ti.

摘要

语义分割是计算机视觉中最活跃的研究课题之一,其目标是为给定图像中的所有像素分配密集的语义标签。在本文中,我们介绍了 HFEN(分层特征提取网络),这是一种轻量级网络,可在推理速度和分割精度之间达到平衡。我们的架构基于编解码器框架。输入图像通过高效的编码器进行下采样,以提取多层特征。然后,通过解码器对提取的特征进行融合,在解码器中聚合全局上下文信息和空间信息,以实现具有实时性能的最终分割。我们在两个标准基准数据集 Cityscapes 和 Camvid 上进行了广泛的实验,在 NVIDIA 2080Ti 上,我们的网络实现了卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f43/8622999/210e9bee737b/sensors-21-07730-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验