Suppr超能文献

FMD-UNet:用于从 CT 图像中 COVID-19 肺部感染分割的细粒度特征挤压和多尺度级联扩张语义聚合双解码器 UNet。

FMD-UNet: fine-grained feature squeeze and multiscale cascade dilated semantic aggregation dual-decoder UNet for COVID-19 lung infection segmentation from CT images.

机构信息

School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China.

出版信息

Biomed Phys Eng Express. 2024 Aug 27;10(5). doi: 10.1088/2057-1976/ad6f12.

Abstract

With the advancement of computer-aided diagnosis, the automatic segmentation of COVID-19 infection areas holds great promise for assisting in the timely diagnosis and recovery of patients in clinical practice. Currently, methods relying on U-Net face challenges in effectively utilizing fine-grained semantic information from input images and bridging the semantic gap between the encoder and decoder. To address these issues, we propose an FMD-UNet dual-decoder U-Net network for COVID-19 infection segmentation, which integrates a Fine-grained Feature Squeezing (FGFS) decoder and a Multi-scale Dilated Semantic Aggregation (MDSA) decoder. The FGFS decoder produces fine feature maps through the compression of fine-grained features and a weighted attention mechanism, guiding the model to capture detailed semantic information. The MDSA decoder consists of three hierarchical MDSA modules designed for different stages of input information. These modules progressively fuse different scales of dilated convolutions to process the shallow and deep semantic information from the encoder, and use the extracted feature information to bridge the semantic gaps at various stages, this design captures extensive contextual information while decoding and predicting segmentation, thereby suppressing the increase in model parameters. To better validate the robustness and generalizability of the FMD-UNet, we conducted comprehensive performance evaluations and ablation experiments on three public datasets, and achieved leading Dice Similarity Coefficient (DSC) scores of 84.76, 78.56 and 61.99% in COVID-19 infection segmentation, respectively. Compared to previous methods, the FMD-UNet has fewer parameters and shorter inference time, which also demonstrates its competitiveness.

摘要

随着计算机辅助诊断技术的进步,COVID-19 感染区域的自动分割在临床实践中为协助患者的及时诊断和康复提供了很大的希望。目前,基于 U-Net 的方法在有效利用输入图像的细粒度语义信息以及弥合编码器和解码器之间的语义差距方面面临挑战。为了解决这些问题,我们提出了一种用于 COVID-19 感染分割的 FMD-UNet 双解码器 U-Net 网络,该网络集成了细粒度特征挤压(FGFS)解码器和多尺度扩张语义聚合(MDSA)解码器。FGFS 解码器通过压缩细粒度特征和加权注意力机制生成精细的特征图,引导模型捕获详细的语义信息。MDSA 解码器由三个层次化的 MDSA 模块组成,专为输入信息的不同阶段设计。这些模块逐步融合不同尺度的扩张卷积,处理来自编码器的浅层和深层语义信息,并利用提取的特征信息在各个阶段桥接语义差距,这种设计在解码和预测分割时捕获广泛的上下文信息,从而抑制模型参数的增加。为了更好地验证 FMD-UNet 的稳健性和泛化能力,我们在三个公共数据集上进行了全面的性能评估和消融实验,分别在 COVID-19 感染分割中实现了 84.76%、78.56%和 61.99%的领先 Dice 相似系数(DSC)得分。与以前的方法相比,FMD-UNet 具有更少的参数和更短的推理时间,这也证明了它的竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验