Suppr超能文献

用于高通量数据采集的高性能计算(HPC)加速及互连技术评估

Evaluation of HPC Acceleration and Interconnect Technologies for High-Throughput Data Acquisition.

作者信息

Cilardo Alessandro

机构信息

Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy.

CeRICT, 82100 Benevento, Italy.

出版信息

Sensors (Basel). 2021 Nov 22;21(22):7759. doi: 10.3390/s21227759.

Abstract

Efficient data movement in multi-node systems is a crucial issue at the crossroads of scientific computing, big data, and high-performance computing, impacting demanding data acquisition applications from high-energy physics to astronomy, where dedicated accelerators such as FPGA devices play a key role coupled with high-performance interconnect technologies. Building on the outcome of the RECIPE Horizon 2020 research project, this work evaluates the use of high-bandwidth interconnect standards, namely InfiniBand EDR and HDR, along with remote direct memory access functions for direct exposure of FPGA accelerator memory across a multi-node system. The prototype we present aims at avoiding dedicated network interfaces built in the FPGA accelerator itself, leaving most of the resources for user acceleration and supporting state-of-the-art interconnect technologies. We present the detail of the proposed system and a quantitative evaluation in terms of end-to-end bandwidth as concretely measured with a real-world FPGA-based multi-node HPC workload.

摘要

多节点系统中的高效数据移动是科学计算、大数据和高性能计算交叉领域的一个关键问题,影响着从高能物理到天文学等对数据采集要求苛刻的应用,在这些应用中,诸如FPGA设备等专用加速器与高性能互连技术一起发挥着关键作用。基于RECIPE地平线2020研究项目的成果,这项工作评估了高带宽互连标准(即InfiniBand EDR和HDR)的使用,以及远程直接内存访问功能,以便在多节点系统中直接暴露FPGA加速器内存。我们展示的原型旨在避免在FPGA加速器本身中构建专用网络接口,将大部分资源用于用户加速,并支持最先进的互连技术。我们详细介绍了所提出的系统,并根据基于实际FPGA的多节点HPC工作负载具体测量的端到端带宽进行了定量评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验