Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria.
Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria.
Molecules. 2021 Nov 13;26(22):6856. doi: 10.3390/molecules26226856.
The saponin escin, extracted from horse chestnut seeds, forms adsorption layers with high viscoelasticity and low gas permeability. Upon deformation, escin adsorption layers often feature surface wrinkles with characteristic wavelength. In previous studies, we investigated the origin of this behavior and found that the substantial surface elasticity of escin layers may be related to a specific combination of short-, medium-, and long-range attractive forces, leading to tight molecular packing in the layers. In the current study, we performed atomistic molecular dynamics simulations of 441 escin molecules in a dense adsorption layer with an area per molecule of 0.49 nm. We found that the surfactant molecules are less submerged in water and adopt a more upright position when compared to the characteristics determined in our previous simulations with much smaller molecular models. The number of neighbouring molecules and their local orientation, however, remain similar in the different-size models. To maintain their preferred mutual orientation, the escin molecules segregate into well-ordered domains and spontaneously form wrinkled layers. The same specific interactions (H-bonds, dipole-dipole attraction, and intermediate strong attraction) define the complex internal structure and the undulations of the layers. The analysis of the layer properties reveals a characteristic wrinkle wavelength related to the surface lateral dimensions, in qualitative agreement with the phenomenological description of thin elastic sheets.
七叶皂苷素 escin 是从马栗树种子中提取的,它形成的吸附层具有高弹性和低透气性。在变形过程中, escin 吸附层通常具有具有特征波长的表面皱纹。在以前的研究中,我们研究了这种行为的起源,发现 escin 层的大量表面弹性可能与短程、中程和长程吸引力的特定组合有关,导致层内分子紧密堆积。在当前的研究中,我们对一个面积密度为 0.49nm2/分子的密集吸附层中的 441 个 escin 分子进行了原子分子动力学模拟。我们发现,与我们以前用更小的分子模型进行的模拟相比,表面活性剂分子在水中的溶解度更低,并且采取更垂直的位置。然而,在不同大小的模型中,相邻分子的数量及其局部取向仍然相似。为了保持它们之间的相互取向, escin 分子会分离成有序的区域,并自发形成褶皱层。相同的特定相互作用(氢键、偶极-偶极吸引力和中间强吸引力)决定了层的复杂内部结构和起伏。对层性质的分析揭示了与表面横向尺寸相关的特征皱纹波长,与薄弹性片的现象描述定性一致。