Suppr超能文献

N-芳基化保护和未保护的 5-溴-2-氨基苯并咪唑作为有机材料:通过计算方法确定非线性光学(NLO)性质和结构特征。

N-Arylation of Protected and Unprotected 5-Bromo-2-aminobenzimidazole as Organic Material: Non-Linear Optical (NLO) Properties and Structural Feature Determination through Computational Approach.

机构信息

Department of Chemistry, Government College University, Faisalabad 38000, Pakistan.

Department of Chemistry, University of Management and Technology (UMT), C11, Johar Town, Lahore 54770, Pakistan.

出版信息

Molecules. 2021 Nov 17;26(22):6920. doi: 10.3390/molecules26226920.

Abstract

The interest in the NLO response of organic compounds is growing rapidly, due to the ease of synthesis, availability, and low loss. Here, in this study, Cu(II)-catalyzed selective N-arylation of 2-aminobenzimidazoles derivatives were achieved in the presence of different bases EtN/TMEDA, solvents DCM/MeOH/HO, and various aryl boronic acids under open atmospheric conditions. Two different copper-catalyzed pathways were selected for N-arylation in the presence of active nucleophilic sites, providing a unique tool for the preparation of NLO materials, C-NH (aryl) derivatives of 2-aminobenzimidazoles with protection and without protection of NH group. In addition to NMR analysis, all synthesized derivatives (- and -) of 5-bromo-2-aminobenzimidazole () were computed for their non-linear optical (NLO) properties and reactivity descriptor parameters. Frontier molecular orbital (FMO) analysis was performed to get information about the electronic properties and reactivity of synthesized compounds.

摘要

由于合成容易、易得且损耗低,人们对有机化合物的 NLO 响应的兴趣迅速增加。在本研究中,在不同的碱 EtN/TMEDA、溶剂 DCM/MeOH/HO 和各种芳基硼酸的存在下,在开放大气条件下实现了 Cu(II) 催化的 2-氨基苯并咪唑衍生物的选择性 N-芳基化。选择了两种不同的铜催化途径,在存在活性亲核位点的情况下进行 N-芳基化,为制备 NLO 材料提供了独特的工具,即 C-NH(芳基)衍生物的 2-氨基苯并咪唑,其中 NH 基团具有保护和无保护。除了 NMR 分析外,还计算了所有合成的 5-溴-2-氨基苯并咪唑()的 -和-()衍生物的非线性光学(NLO)性质和反应性描述符参数。进行了前沿分子轨道(FMO)分析,以获取有关合成化合物电子性质和反应性的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c3/8624707/b0c77bd9e043/molecules-26-06920-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验