Suppr超能文献

新型模型预测水生环境主要营养层次代表性物种的急性和慢性毒性。

New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments.

机构信息

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.

Kode Chemoinformatics s.r.l.-Via Nino Pisano 14, 56122 Pisa, Italy.

出版信息

Molecules. 2021 Nov 19;26(22):6983. doi: 10.3390/molecules26226983.

Abstract

To assess the impact of chemicals on an aquatic environment, toxicological data for three trophic levels are needed to address the chronic and acute toxicities. The use of non-testing methods, such as predictive computational models, was proposed to avoid or reduce the need for animal models and speed up the process when there are many substances to be tested. We developed predictive models for , , and fish for acute and chronic toxicities. The random forest machine learning approach gave the best results. The models gave good statistical quality for all endpoints. These models are freely available for use as individual models in the VEGA platform and for prioritization in JANUS software.

摘要

为了评估化学物质对水生环境的影响,需要有三个营养级别的毒理学数据来解决慢性和急性毒性问题。因此,人们提出了使用非测试方法,如预测计算模型,以避免或减少对动物模型的需求,并在需要测试的物质很多时加快这一过程。我们开发了用于急性和慢性毒性的鱼类、藻类和水蚤的预测模型。随机森林机器学习方法给出了最好的结果。这些模型对于所有终点都具有良好的统计质量。这些模型可作为 VEGA 平台中的单独模型免费使用,并可在 JANUS 软件中进行优先级排序。

相似文献

引用本文的文献

1
Assessing the pharmaceutical residues as hotspots of the main rivers of Catalonia, Spain.评估西班牙加泰罗尼亚主要河流的药物残留热点。
Environ Sci Pollut Res Int. 2024 Jul;31(31):44080-44095. doi: 10.1007/s11356-024-33967-7. Epub 2024 Jun 26.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验