Hasimbegovic Ena, Papp Laszlo, Grahovac Marko, Krajnc Denis, Poschner Thomas, Hasan Waseem, Andreas Martin, Gross Christoph, Strouhal Andreas, Delle-Karth Georg, Grabenwöger Martin, Adlbrecht Christopher, Mach Markus
Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria.
J Pers Med. 2021 Oct 22;11(11):1062. doi: 10.3390/jpm11111062.
Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendations and the clinical use of TAVR. In our study, we utilized a machine learning (ML) driven approach to model the complex decision-making process of Heart Teams when treating young patients with severe symptomatic aortic stenosis with either TAVR or iSAVR and to identify the relevant considerations. Out of the considered factors, the variables most prominently featured in our ML model were congestive heart failure, established risk assessment scores, previous cardiac surgeries, a reduced left ventricular ejection fraction and peripheral vascular disease. Our study demonstrates a viable application of ML-based approaches for studying and understanding complex clinical decision-making processes.
经导管主动脉瓣置换术(TAVR)已迅速成为治疗严重症状性主动脉瓣狭窄的传统孤立性外科主动脉瓣置换术(iSAVR)的可行替代方案。然而,关于年轻患者的数据稀缺,基于数据的建议与TAVR的临床应用之间存在差距。在我们的研究中,我们采用了一种机器学习(ML)驱动的方法,对心脏团队在使用TAVR或iSAVR治疗患有严重症状性主动脉瓣狭窄的年轻患者时的复杂决策过程进行建模,并确定相关考虑因素。在考虑的因素中,在我们的ML模型中最突出的变量是充血性心力衰竭、既定风险评估评分、既往心脏手术、左心室射血分数降低和外周血管疾病。我们的研究证明了基于ML的方法在研究和理解复杂临床决策过程中的可行应用。