Giardina Gabriel, Papp Laszlo, Krause Arno, Marchant James, Pallares-Lupon Nestor, Kulkarni Kanchan, Spielvogel Clemens P, Haberl David, Li Xu, Drexler Wolfgang, Walton Richard D, Unterhuber Angelika, Andreana Marco
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
IHU Liryc, Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux, France.
Sci Rep. 2025 Jul 18;15(1):26040. doi: 10.1038/s41598-025-10515-y.
Myocardial infarction, a leading cause of mortality worldwide, leaves survivors at significant risk of recurrence caused by scar-related re-entrant ventricular tachyarrhythmias. Effective treatment with ablation therapy requires a precise guidance system. Non-linear optical microscopy techniques, such as second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), are promising candidates for a high-resolution alternative to conventional electrical mapping for assessing infarcted cardiac tissue. Here, we apply SHG and TPEF with a resolution advantage over commonly used electrical mapping techniques to assess ex-vivo sheep heart infarction. Analyzing conventional and radiomic features allows for quantitative characterization of scar tissue. Our machine learning classifier achieved high accuracy, offering a promising, data-driven approach for guiding in-situ ablation therapy with increased precision. This study represents a significant step towards integrating quantitative image analysis in therapeutic interventions.
心肌梗死是全球主要的死亡原因之一,幸存者因瘢痕相关的折返性室性心律失常而面临显著的复发风险。消融治疗的有效实施需要精确的引导系统。非线性光学显微镜技术,如二次谐波产生(SHG)和双光子激发荧光(TPEF),有望成为高分辨率的替代传统电标测方法来评估梗死心肌组织。在此,我们应用具有比常用电标测技术更高分辨率优势的SHG和TPEF来评估离体羊心脏梗死情况。分析传统特征和放射组学特征可实现瘢痕组织的定量表征。我们的机器学习分类器实现了高精度,为以更高精度指导原位消融治疗提供了一种有前景的数据驱动方法。这项研究朝着将定量图像分析整合到治疗干预中迈出了重要一步。