Calderaro Adriana, Buttrini Mirko, Farina Benedetta, Montecchini Sara, Martinelli Monica, Crocamo Federica, Arcangeletti Maria Cristina, Chezzi Carlo, De Conto Flora
Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy.
Unit of Clinical Microbiology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy.
Microorganisms. 2021 Oct 24;9(11):2210. doi: 10.3390/microorganisms9112210.
Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice.
黏菌素耐药性是全球公共卫生面临的主要威胁之一,需要可靠且快速的药敏试验方法。本研究的目的是评估一种基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)峰的检测方法,以区分黏菌素耐药(colR)菌株和敏感(colS)菌株。为此,开发了一种分类算法模型(CAM),测试了三种不同的算法:遗传算法(GA)、监督神经网络(SNN)和快速分类器(QC)。其中,基于SNN和GA的CAM表现最佳:识别能力(RC)均为100%,交叉验证(CV)分别为97.62%和100%。即使两种算法的RC和CV值相似,但基于SNN的CAM表现最佳,正确识别了收集到的67/71(94.4%)的菌株:事实上,它正确识别出的colS菌株数量最多(42/43;97.7%),尽管其识别colR菌株的能力较低(15/18;83.3%)。总之,虽然肉汤微量稀释法仍是检测黏菌素药敏性的金标准方法,但CAM是临床实践中快速筛选colR和colS菌株的有用工具。