Nikolaraki Ersi, Goula Grammatiki, Panagiotopoulou Paraskevi, Taylor Martin J, Kousi Kalliopi, Kyriakou Georgios, Kondarides Dimitris I, Lambert Richard M, Yentekakis Ioannis V
Laboratory of Physical Chemistry and Chemical Processes, School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Crete, Greece.
Energy and Environment Institute, University of Hull, Hull HU6 7RX, UK.
Nanomaterials (Basel). 2021 Oct 28;11(11):2880. doi: 10.3390/nano11112880.
The production of syngas (H and CO)-a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen-through the dry (CO2-) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy technologies and sustainable economy. Here we report on the effects of the metal oxide support (γ-AlO, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) on the low-temperature (ca. 500-750 ∘C) DRM activity, selectivity, resistance against carbon deposition and iridium nanoparticles sintering under oxidative thermal aging. A variety of characterization techniques were implemented to provide insight into the factors that determine iridium intrinsic DRM kinetics and stability, including metal-support interactions and physicochemical properties of materials. All Ir/γ-AlO, Ir/ACZ and Ir/CZ catalysts have stable DRM performance with time-on-stream, although supports with high oxygen storage capacity (ACZ and CZ) promoted CO conversion, yielding CO-enriched syngas. CZ-based supports endow Ir exceptional anti-sintering characteristics. The amount of carbon deposition was small in all catalysts, however decreasing as Ir/γ-AlO > Ir/ACZ > Ir/CZ. The experimental findings are consistent with a bifunctional reaction mechanism involving participation of oxygen vacancies on the support's surface in CO activation and carbon removal, and overall suggest that CZ-supported Ir nanoparticles are promising catalysts for low-temperature dry reforming of methane (LT-DRM).
合成气(H和CO)是制造液体能源载体、氨和氢气的关键组成部分,通过甲烷干重整(DRM)生产合成气在多相催化、可再生能源技术和可持续经济领域持续受到关注。在此,我们报告了金属氧化物载体(γ - AlO、氧化铝 - 二氧化铈 - 氧化锆(ACZ)和二氧化铈 - 氧化锆(CZ))对低温(约500 - 750℃)DRM活性、选择性、抗积碳性能以及氧化热老化条件下铱纳米颗粒烧结的影响。采用了多种表征技术来深入了解决定铱本征DRM动力学和稳定性的因素,包括金属 - 载体相互作用和材料的物理化学性质。所有的Ir/γ - AlO、Ir/ACZ和Ir/CZ催化剂在连续运行时都具有稳定的DRM性能,尽管具有高储氧能力的载体(ACZ和CZ)促进了CO转化,产生了富含CO的合成气。基于CZ的载体赋予铱优异的抗烧结特性。所有催化剂中的积碳量都很少,但按Ir/γ - AlO > Ir/ACZ > Ir/CZ的顺序减少。实验结果与一种双功能反应机制一致,该机制涉及载体表面的氧空位参与CO活化和碳去除,总体表明CZ负载的铱纳米颗粒是低温甲烷干重整(LT - DRM)的有前景的催化剂。