Cueto-Díaz Eduardo J, Castro-Muñiz Alberto, Suárez-García Fabián, Gálvez-Martínez Santos, Torquemada-Vico Mª Carmen, Valles-González Mª Pilar, Mateo-Martí Eva
Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.
Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC), C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
Nanomaterials (Basel). 2021 Oct 29;11(11):2893. doi: 10.3390/nano11112893.
In this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO (50 nm), show a remarkable CO sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively at 50 °C). Furthermore, when comparing them to their 200 nm size counterparts (SiO (200 nm) and APTES@SiO (200 nm)), there is a marked CO capture increment as a consequence of their significantly larger micropore volume (0.25 cm/g). Additionally, ideal absorbed solution theory (IAST) was conducted to determine the CO/N selectivity at 25 and 50 °C of the four materials of study, which turned out to be >70, being in the range of performance of the most efficient microporous materials reported to date, even surpassing those based on silica.
在这项工作中,我们描述了尺寸为50 nm的杂化二氧化硅纳米颗粒的特性,其具有出色的尺寸均匀性、大表面积以及显著的CO吸附/解吸能力。我们采用了一系列广泛的技术,从光谱学方法(如紫外可见光谱和红外光谱)到显微镜技术(扫描电子显微镜、原子力显微镜)以及CO吸附/解吸等温线,目的是对该材料进行全面表征。用3-氨丙基(三乙氧基硅烷)修饰的裸露SiO(50 nm)纳米颗粒,即APTES@SiO(50 nm),与原始材料相比,在CO封存方面有显著增强(在50°C时分别为0.57 mmol/g和0.80 mmol/g)。此外,将它们与200 nm尺寸的对应物(SiO(200 nm)和APTES@SiO(200 nm))进行比较时,由于其显著更大的微孔体积(0.25 cm/g),CO捕获量有明显增加。此外,还采用理想吸附溶液理论(IAST)来确定所研究的四种材料在25°C和50°C时的CO/N选择性,结果表明该选择性>70,处于迄今为止报道的最有效微孔材料的性能范围内,甚至超过了基于二氧化硅的材料。