Dzhagan Volodymyr, Kapush Olga, Mazur Nazar, Havryliuk Yevhenii, Danylenko Mykola I, Budzulyak Serhiy, Yukhymchuk Volodymyr, Valakh Mykhailo, Litvinchuk Alexander P, Zahn Dietrich R T
V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine.
Physics Department, Taras Shevchenko National University of Kiev, 01601 Kyiv, Ukraine.
Nanomaterials (Basel). 2021 Oct 31;11(11):2923. doi: 10.3390/nano11112923.
Cu-Zn-Sn-Te (CZTTe) is an inexpensive quaternary semiconductor that has not been investigated so far, unlike its intensively studied CZTS and CZTSe counterparts, although it may potentially have desirable properties for solar energy conversion, thermoelectric, and other applications. Here, we report on the synthesis of CZTTe nanocrystals (NCs) via an original low-cost, low-temperature colloidal synthesis in water, using a small-molecule stabilizer, thioglycolic acid. The absorption edge at about 0.8-0.9 eV agrees well with the value expected for CuZnSnTe, thus suggesting CZTTe to be an affordable alternative for IR photodetectors and solar cells. As the main method of structural characterization multi-wavelength resonant Raman spectroscopy was used complemented by TEM, XRD, XPS as well as UV-vis and IR absorption spectroscopy. The experimental study is supported by first principles density functional calculations of the electronic structure and phonon spectra. Even though the composition of NCs exhibits a noticeable deviation from the CuZnSnTe stoichiometry, a common feature of multinary NCs synthesized in water, the Raman spectra reveal very small widths of the main phonon peak and also multi-phonon scattering processes up to the fourth order. These factors imply a very good crystallinity of the NCs, which is further confirmed by high-resolution TEM.
铜锌锡碲(CZTTe)是一种廉价的四元半导体,与已经得到深入研究的铜锌锡硫(CZTS)和铜锌锡硒(CZTSe)不同,到目前为止尚未得到研究,尽管它可能具有适用于太阳能转换、热电及其他应用的理想特性。在此,我们报道了通过一种原始的低成本、低温水相胶体合成法合成CZTTe纳米晶体(NCs),该方法使用小分子稳定剂巯基乙酸。约0.8 - 0.9 eV处的吸收边与铜锌锡碲预期值吻合良好,这表明CZTTe是红外光电探测器和太阳能电池的一种经济实惠的替代材料。作为结构表征的主要方法,使用了多波长共振拉曼光谱,并辅以透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)以及紫外可见和红外吸收光谱。实验研究得到了电子结构和声子谱的第一性原理密度泛函计算的支持。尽管纳米晶体的组成与铜锌锡碲化学计量比存在明显偏差,这是在水中合成的多元纳米晶体的一个共同特征,但拉曼光谱显示主要声子峰的宽度非常小,并且还存在高达四阶的多声子散射过程。这些因素意味着纳米晶体具有非常好的结晶度,高分辨率透射电子显微镜进一步证实了这一点。