Suppr超能文献

从纳米晶到非晶(ZrNiAl)W(x;0、2、10、20、35原子百分比)的相变及随后的固结。

Phase Transformations from Nanocrystalline to Amorphous (ZrNiAl)W (x; 0, 2, 10, 20, 35 at. %) and Subsequent Consolidation.

作者信息

El-Eskandarany M Sherif, Ali Naser, Al-Ajmi Fahad, Banyan Mohammad

机构信息

Nanotechnology and Applications Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait.

出版信息

Nanomaterials (Basel). 2021 Nov 3;11(11):2952. doi: 10.3390/nano11112952.

Abstract

Glasses, which date back to about 2500 BC, originated in Mesopotamia and were later brought to Egypt in approximately 1450 BC. In contrast to the long-range order materials (crystalline materials), the atoms and molecules of glasses, which are noncrystalline materials (short-range order) are not organized in a definite lattice pattern. Metallic glassy materials with amorphous structure, which are rather new members of the advanced materials family, were discovered in 1960. Due to their amorphous structure, metallic glassy alloys, particularly in the supercooled liquid region, behave differently when compared with crystalline alloys. They reveal unique and unusual mechanical, physical, and chemical characteristics that make them desirable materials for many advanced applications. Although metallic glasses can be produced using different techniques, many of these methods cannot be utilized to produce amorphous alloys when the system has high-melting temperature alloys (above 1500 °C) and/or is immiscible. As a result, such constraints may limit the ability to fabricate high-thermal stable metallic glassy families. The purpose of this research is to fabricate metallic glassy (ZrNiAl)W (x; 0, 2, 10, 20, and 35 at. %) by cold rolling the constituent powders and then mechanically alloying them in a high-energy ball mill. The as-prepared metallic glassy powders demonstrated high-thermal stability and glass forming ability, as evidenced by a broad supercooled liquid region and a high crystallization temperature. The glassy powders were then consolidated into full-dense bulk metallic glasses using a spark plasma sintering technique. This consolidation method did not result in the crystallization of the materials, as the consolidated buttons retained their short-range order fashion. Additionally, the current work demonstrated the capability of fabricating very large bulk metallic glassy buttons with diameters ranging from 20 to 50 mm. The results indicated that the microhardness of the synthesized metallic glassy alloys increased as the W concentration increased. As far as the authors are aware, this is the first time this metallic glassy system has been reported.

摘要

眼镜可追溯到公元前约2500年,起源于美索不达米亚,后来在公元前约1450年被带到埃及。与长程有序材料(晶体材料)不同,作为非晶体材料(短程有序)的玻璃的原子和分子没有以确定的晶格模式排列。具有非晶结构的金属玻璃材料是先进材料家族中相当新的成员,于1960年被发现。由于其非晶结构,金属玻璃合金,特别是在过冷液体区域,与晶体合金相比表现不同。它们展现出独特且异常的机械、物理和化学特性,这使它们成为许多先进应用中理想的材料。尽管可以使用不同技术生产金属玻璃,但当体系中有高熔点合金(高于1500℃)和/或互不相溶时,许多这些方法无法用于生产非晶合金。因此,此类限制可能会限制制造高热稳定性金属玻璃家族的能力。本研究的目的是通过对组成粉末进行冷轧,然后在高能球磨机中对其进行机械合金化来制备金属玻璃(ZrNiAl)W(x;0、2、10、20和35原子百分比)。所制备的金属玻璃粉末表现出高热稳定性和玻璃形成能力,宽的过冷液体区域和高的结晶温度证明了这一点。然后使用放电等离子烧结技术将玻璃粉末固结为全致密的块状金属玻璃。这种固结方法没有导致材料结晶,因为固结后的坯块保持了它们的短程有序方式。此外,当前的工作证明了制造直径范围为20至50毫米的非常大的块状金属玻璃坯块的能力。结果表明,合成的金属玻璃合金的显微硬度随着W浓度的增加而增加。据作者所知,这是首次报道这种金属玻璃体系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9d/8618145/f59189325c9a/nanomaterials-11-02952-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验