Ghent University/IMEC, Zwijnaarde, Belgium.
Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain; Medical Engineering Development and Innovation Center, Universidad Autónoma de Madrid, Madrid, Spain.
Arch Soc Esp Oftalmol (Engl Ed). 2021 Nov;96 Suppl 1:68-73. doi: 10.1016/j.oftale.2021.01.004. Epub 2021 Jun 17.
The perform pre-clinical testing using optical design tools to simulate the optical quality of a smart artificial iris platform encapsulated in a scleral contact lens. These tools allow us to generate aniridia eye models and evaluate different metrics of visual quality and retinal illumination based on the aperture of the artificial iris based on liquid crystals.
The OCT imaging technique was used to measure the geometry of the anterior segment in a patient with aniridia and, from these data, the eye model was generated with the Zemax optical design program and specific programs developed in Matlab. Ocular aberrations were calculated and the visual function of the anirida eye model was evaluated in three scenarios: (i) without optical correction, (ii) with correction with a commercial scleral contact lens, and (iii) with correction with an optical lens. Intelligent contact based on artificial iris.
Optical quality in patients with aniridia is limited by the magnitude of high-order aberrations. Conventional scleral contact lens design accurately corrects for blur but is unable to compensate for high-order ocular aberrations, especially spherical aberrations. The artificial iris-based smart contact lens design enables virtually all high-order aberrations to be compensated with active control of the pupillary diameter (activation of liquid crystal cells based on ambient lighting). In addition to minimizing high-order aberrations, reducing the pupil size would increase the depth of focus.
This article demonstrates by means of optical simulations the concept of an intelligent artificial iris platform encapsulated in a scleral contact lens and its possible application in patients with aniridia. Furthermore, it allows us to anticipate possible visual results in clinical trials with healthy patients (after application of mydriatic agents) and in patients with aniridia. The results demonstrate a better visual quality and a decrease in retinal illumination.
使用光学设计工具进行临床前测试,以模拟封装在巩膜隐形眼镜中的智能人工虹膜平台的光学质量。这些工具使我们能够生成无虹膜眼模型,并根据基于液晶的人工虹膜的孔径评估不同的视觉质量和视网膜照明度量。
使用光学相干断层扫描 (OCT) 成像技术测量无虹膜患者的前段几何形状,并使用 Zemax 光学设计程序和在 Matlab 中开发的特定程序生成眼模型。计算眼像差,并在三种情况下评估无虹膜眼模型的视觉功能:(i) 无光学矫正,(ii) 用商业巩膜隐形眼镜矫正,以及 (iii) 用光学透镜矫正。基于人工虹膜的智能隐形眼镜。
无虹膜患者的光学质量受高阶像差大小的限制。传统的巩膜隐形眼镜设计可准确校正模糊,但无法补偿高阶眼像差,尤其是球差。基于人工虹膜的智能隐形眼镜设计能够通过主动控制瞳孔直径(基于环境照明激活液晶单元)几乎补偿所有高阶像差。除了最小化高阶像差外,减小瞳孔尺寸还会增加景深。
本文通过光学模拟演示了封装在巩膜隐形眼镜中的智能人工虹膜平台的概念及其在无虹膜患者中的可能应用。此外,它使我们能够预测健康患者(散瞳剂应用后)和无虹膜患者的临床试验中的可能视觉结果。结果表明视觉质量更好,视网膜照明减少。