Suppr超能文献

用于垃圾分类的显著检测与图像识别相结合的健壮框架。

A robust framework combined saliency detection and image recognition for garbage classification.

机构信息

Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China.

Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China.

出版信息

Waste Manag. 2022 Mar 1;140:193-203. doi: 10.1016/j.wasman.2021.11.027. Epub 2021 Nov 24.

Abstract

Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% - 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification.

摘要

利用深度学习解决垃圾分类问题已经成为计算机视觉领域的一个热门话题。使用最广泛的垃圾数据集 Trashnet 仅包含以白板为背景的垃圾图像。以前基于 Trashnet 的研究主要集中在使用不同的网络来提高分类精度,而没有考虑到实际应用中可能遇到的复杂背景。为了解决这个问题,我们提出了一种结合显著度检测和图像分类的框架,以提高泛化性能和鲁棒性。采用显著度网络 Salinet 来获取垃圾目标区域。然后,创建一个包含该区域的最小矩形,并用于分割垃圾。使用 Inception V3 分类网络来识别分割后的垃圾图像。将原始 Trashnet 的图像与其他显著度检测数据集的复杂背景融合。使用融合后的和原始的 Trashnet 一起进行训练,以提高对噪声和复杂背景的鲁棒性。与图像分类网络和经典目标检测算法相比,所提出的框架在融合复杂背景的测试集上的准确率提高了 0.50% - 15.79%。此外,在所收集的实际数据集上,所提出的框架的准确率提高了 4.80%,取得了最佳性能。这些比较证明了我们的框架在复杂背景下的垃圾分类更具鲁棒性。该方法可以应用于智能垃圾桶,实现自动垃圾分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验