Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore.
Br J Clin Pharmacol. 2022 May;88(5):2267-2283. doi: 10.1111/bcp.15158. Epub 2022 Jan 5.
Rivaroxaban is a viable anticoagulant for the management of cancer-associated venous thromboembolism (CA-VTE). A previously verified physiologically-based pharmacokinetic (PBPK) model of rivaroxaban established how its multiple pathways of elimination via both CYP3A4/2J2-mediated hepatic metabolism and organic anion transporter 3 (OAT3)/P-glycoprotein-mediated renal secretion predisposes rivaroxaban to drug-drug-disease interactions (DDDIs) with clinically relevant protein kinase inhibitors (PKIs). We proposed the application of PBPK modelling to prospectively interrogate clinically significant DDIs between rivaroxaban and PKIs (erlotinib and nilotinib) for dose adjustments in CA-VTE.
The inhibitory potencies of the PKIs on CYP3A4/2J2-mediated metabolism of rivaroxaban were characterized. Using prototypical OAT3 inhibitor ketoconazole, in vitro OAT3 inhibition assays were optimized to ascertain the in vivo relevance of derived transport inhibitory constants (K ). Untested DDDIs between rivaroxaban and erlotinib or nilotinib were simulated.
Mechanism-based inactivation (MBI) of CYP3A4-mediated rivaroxaban metabolism by both PKIs and MBI of CYP2J2 by erlotinib were established. The importance of substrate specificity and nonspecific binding to derive OAT3-inhibitory K values of ketoconazole and nilotinib for the accurate prediction of interactions was illustrated. When simulated rivaroxaban exposure variations with concomitant erlotinib and nilotinib therapy were evaluated using published dose-exposure equivalence metrics and bleeding risk analyses, dose reductions from 20 to 15 and 10 mg in normal and mild renal dysfunction, respectively, were warranted.
We established a PBPK-DDDI model to prospectively evaluate clinically relevant interactions between rivaroxaban and PKIs for the safe and efficacious management of CA-VTE.
利伐沙班是一种可行的抗凝剂,可用于治疗癌症相关静脉血栓栓塞症(CA-VTE)。先前验证的利伐沙班生理基于药代动力学(PBPK)模型表明,其通过 CYP3A4/2J2 介导的肝代谢和有机阴离子转运蛋白 3(OAT3)/P-糖蛋白介导的肾分泌的多种消除途径使其易受与临床相关蛋白激酶抑制剂(PKIs)的药物-药物-疾病相互作用(DDDIs)影响。我们提出应用 PBPK 模型来前瞻性探究利伐沙班与 PKIs(厄洛替尼和尼洛替尼)之间的临床显著 DDDIs,以调整 CA-VTE 的剂量。
表征了 PKIs 对 CYP3A4/2J2 介导的利伐沙班代谢的抑制能力。使用原型 OAT3 抑制剂酮康唑,优化了体外 OAT3 抑制测定法,以确定衍生的转运抑制常数(K i )的体内相关性。模拟了利伐沙班与厄洛替尼或尼洛替尼之间未经测试的 DDDIs。
确定了两种 PKIs 对 CYP3A4 介导的利伐沙班代谢的基于机制的失活(MBI),以及厄洛替尼对 CYP2J2 的 MBI。阐明了底物特异性和非特异性结合对于准确预测相互作用得出 OAT3 抑制 K i 值的重要性。当使用已发表的剂量-暴露等效性指标和出血风险分析评估同时使用厄洛替尼和尼洛替尼治疗时利伐沙班暴露变化时,分别需要将正常和轻度肾功能不全患者的剂量从 20 毫克减少到 15 毫克和 10 毫克。
我们建立了一个 PBPK-DDDI 模型,以前瞻性评估利伐沙班与 PKIs 之间的临床相关相互作用,以安全有效地治疗 CA-VTE。